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We elaborate on the analogy between the transfer matrix of usual lattice models 
and the master equation describing the time development of cellular automata. 
Transient and stationary properties of probabilistic automata are linked to sur- 
face and bulk properties, respectively, of restricted statistical mechanical 
systems. It is demonstrated that methods of statistical physics can be suc- 
cessfully used to describe the dynamic and the stationary behavior of such 
automata. Some exact results are derived, including duality transformations, 
exact mappings, "disorder," and "linear" solutions. Many examples are worked 
out in detail to demonstrate how to use statistical physics in order to construct 
cellular automata with desired properties. This approach is considered to be a 
first step toward the design of fully parallel, probabilistic systems whose com- 
putational abilities rely on the cooperative behavior of their components. 

KEY WORDS:  Cellular automata; multispin Ising models; static and 
dynamic critical phenomena; duality relations; exact solutions; stochastic 
processes; predictible behavior; topological invariants; microcanonical 
simulations. 

1. I N T R O D U C T I O N  

A cellular automaton (CA) is a lattice model with discrete variables which 
are updated in discrete time steps according to a specified set of local rules. 
The dynamic behavior of systems containing many discrete elements with 
local interactions can be conveniently modeled in this way. One of the 
earliest applications was for biological systems; actually, the concept was 
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introduced by von Neumann  and Ulam (1)'3 in an at tempt to distill in a 
mathematical  form the "logical structure of life." A survey of papers 
published in the last 10 years on the subject 4 shows that, besides many 
mathematical  papers, most applications of concepts of cellular automata  
can be found in biology (3) and in the theory of automata.  (4~ Physicists 
became active in this field only relatively recently, (6)'5 motivated in part  by 
the expected proliferation of special-purpose machines built for stochastic 
simulations of very highly time-consuming problems (see Ref. 7 for reviews) 
and partly by the study of models for neuronal networks (8),6 and failure- 
resistant machines. (1o) 

The definition of a cellular au tomaton given above is usually sup- 
plemented with the requirement of a deterministic, simultaneous updating 
(dynamics). In this paper  we emphasize probabilistic cellular automata:  we 
hope to convince those who dislike such an extended definition that this 
generalization is an extremely useful one. Many interesting phenomena, 
such as changes from an n-cycle to an (n + 1)-cycle behavior, phase trans- 
itions, etc., can be achieved only if one has some probabilistic elements in 
the CA rules. On the other hand, such an extension is very general: any 
proper Monte Carlo simulation, quasirandom number  generator, (1~ etc., 
might be labeled as a cellular automaton.  Any Markovian process defined 
on a lattice is also a good candidate for a CA, so the topic is overhelmingly 
abundant.  This fact is partly expressed by the size of this article in spite of 
the efforts by the author to select and present here only the most 
illustrative examples. 

The main goal of this paper is to make an extensive use of the 
similarity between the usual transfer matrix formalism and the time 
evolution operator  (master equation) of the cellular automata.  Finding an 
analogy between two different fields usually benefits both. In our case, 
defining appropriate  cellular au tomata  rules for statistical physical systems 
is equivalent to finding an importance sampling procedure for the Green 
function Monte Carlo method (12/giving exact results for the ground-state 
energy and ground-state correlation functions. This leads to a very accurate 
and powerful numerical method for studying statistical physical systems. 
Moreover,  by using deterministic CA that conserve some macroscopic 

3 For books on cellular automata see Refs. 2. 
4 This was done through a search of the PDOC a database, containing documents on parallel 

computing, parallel processing, and high-speed computing maintained by J. Hake, ZAM 
KFA Jfilich (Manual KFA-ZAM-0055 DB, 1986). 

5 For a recent collection of reprints see WolframJ 5~ See also the full volume of Physica D 10 
(1984). 

6 For a cellular automaton model see Refs. 9. 
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quantities, it is possible to simulate hydrodynamics (13~ or thermodynamics 7 
using "microcanonical" ensembles. On the other hand, the study of 
dynamical systems such as cellular automata may be undertaken using 
standard methods developed in statistical physics, especially the ones deal- 
ing with cooperative critical behavior near continuous phase transitions. 
Some of these methods are analytical in nature and lead to exact relations; 
others are numerical methods especially useful when studying complicated 
rules or the critical behavior of CA. 

The paper is organized basically in two main parts: Sections 2~4 form 
a theoretical basis for the applications discussed in Section 5. In Section 2 
we discuss the transfer matrix formalism and the master equation 
approach, pointing out the common features. A few pedagogical examples 
illustrating the basic concepts are given and some theorems on finite CA 
are briefly summarized. The classification of different CA from the point of 
view of their time-developing operators leads in a natural way to the dis- 
cussion of different possible mechanisms for phase transitions. Section 3 
contains most of our exact results. The notion of duality is generalized to 
models with many spin interactions, including odd-spin and negative 
interactions. In general, the model dual to a cellular automaton has more 
degrees of freedom than the original one--of ten its parameters are complex 
("unphysical" regime). Two distinct classes of exactly soluble CA are dis- 
cussed: disorder solutions and linear (free) models. Both represent a valid 
starting point for series expansions. Finally, we show that the condition of 
exact integrability--involving here the existence of an infinite number of 
integrals of motion (conserved charges )--has a specific form in the case of 
CA models. In Section 4 we discuss numerical finite-size lattice calculations 
and extrapolation through the phenomenological renormalization group 
method: as an example, we consider the "Hamiltonian limit" or the sequen- 
tial updating version of the directed percolation problem. Our numerical 
results indicate that the critical behavior is not affected by the change in 
dynamics. 

The second part of the paper (Sections 5-6) is quite unusual. In 
Section 5 we address the question of how to design rules leading to 
an a priori desired behavior. This question rests more in the realm of 
engineering than on that of statistical mechanics. Accordingly, I have 
selected a few representative examples centered around four topics I 
consider of major importance for practical applications of CA (Section 6). 

7 The observation made by Pomeau 114~ that Fredkin's reversible Q2R ~5~ rule conserves the 
energy of two decoupled Ising models has been used by Herrmann ~16~ to devise a very fast 
microcanonical simulation algorithm. See also Goles and VichniacJ 17) 
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1. The question of phase transitions in CA is considered in some 
detail; we show how to design rules leading to special types of critical 
exponents. 

2. For many practical applications the question of conserved quan- 
tities may be crucial: we give a few examples and in particular discuss a 
simple local automaton conserving the topological structure of a given 
initial configuration. 

3. Sometimes it is useful to have a system that can change from a 
limit cycle of given length to a different limit cycle, such transitions corres- 
pond to a change from a commensurate phase to another commensurate 
phase: two examples are explicitly worked out. 

4. Finally, we emphasize that one may easily build parallel networks 
of cellular automata with a quite complex behavior by linking together two 
different, but simple, rules. One such class are the "substitution" and 
"hierarchical" automata; here probabilistic rules are changed deter- 
ministically in time according to the state of a parallelly running deter- 
ministic automaton. Another case of such structures corresponds to 
quenched random networks of automata, with a very complicated 
behavior. Although very important, random networks of automata will be 
given here a limited space, mainly because of the topic has a strong overlap 
with the area of research regarding neural networks and spin-glass models, 
which is abundantly and well represented in the recent physics literature. 

Finally, in Section 6 we summarize the results of our paper by 
speculating on the feasibility of fully parallel probabilistic automata 
networks, whose computing abilities are provided through the cooperative 
behavior of their components. I call this concept a probabilistic computer; 
others call it a Boltzmann machine. (18) At the moment one can put forward 
only little more than speculations on this subject, presented with the firm 
convinction that physics, and especially statistical physics, has an impor- 
tant role to play in understanding the basic features and the main 
functional principles of such networks. 

2. GENERAL F O R M A L I S M  A N D  ( 0 + 1 ) - D I M E N S I O N A L  
E X A M P L E S  

2.1. General i t ies 

Consider a regular lattice in d +  1 dimensions. Here we follow the 
field-theoretic notation; d is the dimension of the "space," 1 is the dimen- 
sion of "time." In (classical) statistical physics we have then a (d+ 1)- 
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dimensional  lattice whose transfer opera tor  will "transfer" the interactions 
from a d-dimensional space slice at time t to the next space slice at time 
t + ~. For  simplicity, we consider the square lattice shown in Fig. la  and we 
suppose that at each lattice point  we have an Ising-like variable si.j= +_1. 
General izat ion to other  variables is s traightforward,  but  in this paper  we 
shall consider only discrete variables with q (mostly q = 2) possible states. 
The spins of Fig. 1 interact with other  spins located a round  a basic face of 
the square lattice ( interact ion-round-a-face = I R F  model).  (19) As will soon 
become evident, not  all forms of interactions are suitable for construct ing 
cellular automata .  Another  typical interaction form is the checkerboard  lat- 
tice shown in Fig. 2a; only in the full squares are all possible interactions 
between the corner  spins allowed. The part i t ion function depends on all the 
couplings of the different interaction terms of the energy function (interac- 
tion representation) or, equivalently, on all independent  Bol tzmann factors 

M 

I.. N 

Si,j Si,j,l 

Si+l,j Si+l,jd 

a) 

x 
s 

b) 

NI 

S,i+ 1 " / 
5:z>:>x 

S i+2 

Fig. 1. The interactions-round-a-face (IRF) model and the diagonal-to-diagonal transfer 
matrix. (a)All possible interactions are allowed between the four corner spins forming an 
elementary face of the square lattice (hatched square). (b) The portion of the square lattice 
whose Boltzmann factor constitutes the element of the diagonal-to-diagonal transfer matrix 
corresponding to a given configuration of spins denoted by circles and crosses, respectively. 

822/49/1-2-10 
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associated with an elementary face w(si, j, si+ 1,~ls~+ ~,j+ 1, si, j+ 1) (weight 
representation). The part i t ion function of an N x M lattice is defined as 

ZNM(W)= ~ H W(Si, j' Si+l,jlSi+t,j+l, Si, j+~) (2.1) 
{si, j} (nn) 

The sums can be "ordered" in some w a y - - f o r  example, row after row or 
diagonal  after d i a g o n a l - - a n d  a proper  repart i t ioning of the produc t  in 
(2.1) leads to the well known expression (19) 

qN' 
ZxM(w) = T r [ T  M'] = Z t~ '  (2.2) 

where N '  is the number  of spins in a layer (row or diagonal),  M '  is the 
number  of layers, and 

T{~},{~,} 

is a matrix of dimensions qN, with eigenvalues t~. In Fig. lb  the diagonal- 
to-diagonal  transfer matrix is also depicted graphically and equals 

TD-D= FFI W3"'"  W2k+ 1 W2 m 4 " ' "  WN' (2.3) 

Q) 

i i  i i  t t  

Si Si+l Si+2 

b) si si+ I si+ 2 

Fig. 2. The checkerboard lattice and the corresponding row-to-row transfer matrix, (a)All 
possible interactions are allowed within the hatched squares; the white squares contain no 
interaction. (b) An element of the row-to-row transfer matrix is obtained by summing over all 
possible configurations of the second row. 
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where 

! ! S r . m k (~Sl,S['''(~sk,s'kW(Sk, Sk+l,Sk+21Sk, Sk+l, k+2)(~Sk+2,S'k+2 "'6SN,,S N, 

The row-to-row transfer matrix of the checkerboard lattice is indicated in 
Fig  2b and has the definition 

rR-~ = Y~ (rl)s,s, (r2)s,s, s , s  ' 

{s'} 
N 

= ~, [I w . ( s ,  si+l Is;, si+1)x w,,(s'i+I, s'i+2[s'/+l, S[+z) (2.4) 
{s') i- 1 

where w�9  indicates the weight of a hatched face in Fig. 2. 
In general T is a nonsymmetric, real matrix and its spectral decom- 

position is (tl >~ t2 ~> t3--.) 
qN' 

T= ~ IR~) t~(L~l (2.5) 
~ = 1  

where the left (L~I and the right ]RB) eigenvectors are biorthogonal 

(L~IR e) =a~, e 

When M' ~ o0 and tl is nondegenerate (also tk, k > 1 is not exponentially 
degenerate), any function A(s) of spins lying on the same "space" layer has 
the expectation value 

(A(s ) )  = (Ll(s)l  A(s)IRl(S))  (2.6) 

while correlations of functions B(se)• C(S,+R) involving spin variables on 
layers separated by a distance R are given by 

7 \t~/ 

,(t2"~ R 
M > R ~  \ ~ /  (LI tB(s )  I R z ) ( L z l C ( s ) t R 1 )  (2.7) 

These equations are all valid only for matrices of simple structure when 
(L~I B, C I R I ) = 0  and can be easily generalized when some eigenvalues 
are degenerate; this will be shortly discussed in the context of phase trans- 
ition mechanisms. 

From Eqs.,(2.2), (2.6), and (2.7) it is obvious that the knowledge of a 
few largest eigenvalues and of the corresponding left and right eigenvectors 
is sufficient for the calculation of thermodynamic quantities and of the 
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correlation lengths parallel and perpendicular to the chosen layers. Since 
the operator T is real, positive (all its elements are Boltzmann weights), 
and irreducible (see later exceptions), the Frobenius-Perron theorem (2~ 
ensures that the largest eigenvalue is not degenerate and the corresponding 
eigenvector is nodeless, as long as the matrix is finite. Phase transitions 
occur when in the N' --, oe limit the largest eigenvalue becomes degenerate. 
Any operator that has nonzero matrix elements between the two (or more) 
degenerate states is a good candidate for an order parameter, provided one 
does not have a simple crossing of eigenvalues (first-order transition). 

It is very seldom that one can diagonalize exactly the transfer 
matrix. (19) In general one relies on various numerical methods, such as 
variational approaches, (21),8 renormalization group methods, ~23~ or finite- 
size extrapolation of exact numerical diagonalization results. (24~,9 However, 
the exact diagonalization of very large matrices sometimes becomes intrac- 
table before the extrapolation procedure converges. In such cases one may 
compromise on the accuracy of the largest eigenvalues (and notably 
on that of the corresponding eigenvectors) and apply a stochastic 
diagonalization procedure known as the Green function Monte Carlo 
(GFMC) method. ~2'261 Equation (2.2) can be viewed as the sum of all 
possible paths running randomly in the space of the transfer matrix indices 
and returning to their starting position after M' steps. The large majority of 
these random walks give a small contribution to the partition function. 
This suggests the choice of a transition probability that is proportional to 
the value of the transfer matrix elements. This probability distribution is 
normalized as follows. Suppose one knows the left eigenvector (Lxl 
corresponding to tl; denote its elements by {Ll(i)}. The matrix 

I 
Pik - - -  L , ( i )  T i l L  1 ~(k) (2.8) 

, - - t l  

is a stochastic matrix, i.e., Z i  Pi, k = 1. Thus, any single walk in the index 
space of P will give the exact tl with variance zero. In practice, of course, 
it is more difficult to obtain (Ll l  than tl. The basic idea of importance 
sampling is that using an appropriate Ansatz will make P almost 
stochastic (12"26) and will reduce drastically the variance of the measured tl. 

Since P is a stochastic operator, we might reinterpret it as a discrete- 
time developing operator for a cellular automaton defined on one layer 
(space) of N' spins. Starting with some initial right vector IR({s}, t = 0))  -= 

8 F o r  a n  a p p l i c a t i o n  o f  v a r i a t i o n a l  pr inc ip les  to es t imate  the  d y n a m i c  cr i t ica l  e x p o n e n t  see 
H a a k e  a n d  Thol .  122) 

9 F o r  a review see Barbe r .  (2s) 
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R (~ which we call the initial configuration, and iterating in discrete time 
steps, one obtains [-see Eq. (2.4) and Fig. 2b] 

R({s"}, t + 2 z ) =  ~ [PR-R(S"[S) R({S}, t)] (2.9) 
(s} 

for the "row-to-row" rules and a similar equation involving pD-D for the 
"diagonal-to-diagonal" rules (Fig. lb). Here pD-D and pR-R are the 
stochastic matrices constructed from the transfer operators T D-D and T RR, 
respectively, and involve in both cases a two-step recursion in time. These 
processes may be split into two one-step recursions with alternating time 
development operators. 

From Eq. (2.8) it follows that there is no difficulty in defining 
appropriate cellular automata dynamic rules for any statistical physical 
model with a finite and tractable transfer matrix (see the following exam- 
ples). The main question is what happens in higher dimensions, where 
usually the transfer matrix is infinite. Is it possible, for example, to start 
from exactly soluble models (~9) and construct dynamic rules? The answer is 
yes and no. In principle, the knowledge of the left eigenvector with largest 
eigenvalue is sufficient for constructing the stochastic matrix P whose 
elements give the probability that a given configuration of "children" has 
been born from a given configuration of "parents." In this sense every 
single "child" spin depends on the whole generation of its parents and of its 
peers. For any practical purpose, however, one would like to set all spins at 
some time to independently o f  each other and depending only on the values 
of the spins within the (usually short range) of the rules at time to-Z.  
These conditions both can be satisfied if the transfer matrix has the follow- 
ing structure: 

T~.s, = l~ w(si, ..... s,k l s'l , ..... s'zK) (2.10) 

where the elementary faces w may interpenetrate except at the base 
(spins s) and 

w(si~,..., sikls)~,..., s'tK)= const (2.11) 
si  I ,..., Si k 

When expanding the solution of (2.10) (2.11), w must contain, besides a 
constant 1/2, all possible spin products that include at least one sio, 
a = 1, 2 ..... k, spin. 

A few possibilities for w faces are shown in Fig. 3. This particular form 
of the w faces involves a constant left eigenvector (L~]. Equations 
(2.10) (2.11) are known in statistical physics as disorder line conditions. 1~ 

~0 For reviews on the subject of disorder lines see Refs. 27. 
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s;_, s:., s;_l sl s ; ,  s'i_2 si_~ s; s;+l 

si S1 

a) b) c) 

Fig. 3. Two-dimensional statistical mechanical models with different Boltzmann faces. 
(a) Checkerboard triangular lattice, (b)simple model with interpenetrating faces, (c)a more 
general model with interpenetrating faces. The faces end on the bottom row without having 
common lattice points. Note the periodic boundary conditions in the "space" direction. 

Strictly speaking, this name is appropr ia te  only in ( 0 + 1 ) -  and (1 + l ) -  
dimensional  CA with symmetric  transfer matrices (symmetric CA)11; there 
are no phase transitions for temperatures T >  0, and hence the name dis- 
order  line (see Section 3 for a discussion on this point).  We refer in what  
follows to Eq. (2.11) as to the cellular automaton condition. 

Once the original statistical mechanical  problem is solved by 
diagonalizing a transfer matrix, it is often possible to do this also for other 
choices of  transfer matrices. The same basic solution may  be used in setting 
different "dynamic"  rules. An extreme example is shown in Fig. 4, 
exhibiting the sparse Kra m e r s -W a nn i e r  (291 transfer matrix with skew boun-  
dary  conditions. In this formulat ion the spins are set sequentially and 
depend on the value of the spins set in the last ( N +  1)r steps: 

tR(s t ,  s2 ..... s'k,..., S N -  I- 1) 

= E [ I ~ ( S k I S k  I ,SIk,  S k + I ) R ( s 1 , s 2  ..... S k ..... SN+I) ] (2.12) 
Sk 

where ~,(alb, c, d) can be interpreted as a condit ional  probabil i ty if 
Eq. (2.1 1) is fulfilled. An impor tan t  advantage  of this formulat ion is the fact 

1~ By a symmetric CA we mean a cellular automaton whose elementary interaction face is 
invariant when the time direction is reversed, or if its face can be recast in a symmetric form 
by a repartition of couplings. If the rules are deterministic, such a CA is reversible. The role 
of irreversibility in deterministic CA was exposed by Bennett and Grinstein. 128) 
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S 4 S 5 S 6 S 7 S 5 

==:> 

S 6 S 7 

Fig. 4. Graphical representation of the eigenvalue equation for the sparse Kramers-Wannier 
transfer matrix applied to the IRF model. The spin s; is summed up on the left-hand side of 
the equation. The double line denotes the ]RI > state: all possible interactions with the same 
symmetry as that of the original Hamiltonian are allowed between the spins lying on this line. 
From the point of view of the cellular automaton rule, this procedure has the important 
advantage that the spins can be updated one at a time. 

that the spins can be updated independently of each other even for long- 
range rules. 

A different but equivalent form of Eq. (2.9) is 

R({s'}, t +2~) -R({s} ,  t )=  ~ P(s'ls) R({s}, t ) -  ~ P(sbs') R({s'}, t) 
{s} {st 

(2.13) 

Here P(s]s') is the conditional probability given by the element 

P{s,},{s} 

of the stochastic matrix. This discrete time master equation follows directly 
from Eq. (2.9) by using the normalization conditions 

p(sls')  = F~ R(s, t ) =  
(s} {s} 

The stationary probability distribution of Eqs. (2.9)-(2.10) is just ]RI> 
with elements R(1)(s), which, according to the Perron Frobenius theorem, 
are positive. The expectation value of equal-time operators in the 
stationary state follows from Eq. (2.6) as 

lira <A(S)>T= <LI(s)] A(s)]RI(S)> = ~ A ( s )  RI(S) (2.14) 
T ~ o ~  

S 

while the stationary expectation values of non-equal-time operators are 
given by 

lim <A(s,T) B ( s , t + T I > = 2 < L I I A I R ~ ) p ' ~ < L ~ I B i R I >  (2.15) 
T ~ o c  
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where p~ ~< 1 are the eigenvalues of the operator P. Relations (2.14)-(2.6) 
and (2.15)-(2.7) make the analogy between the transfer matrix formalism 
and the master equation approach complete as far as the stationary proper- 
ties are concerned. Note that our statistical system had originally periodic 
boundary conditions, whereas the time evolution of CA starts from some 
fixed boundary conditions. Thus, the transient phenomena in cellular 
automata are related to surface effects in the corresponding statistical 
mechanical system and decay in time according to the eigenvalues of the P 
operator, only the largest ones surviving at long times. Let [R ~~ be the 
initial right-side vector describing the boundary conditions at the surface. 
Then in general 

(A(T) B(T+ t)5 = ~ ,  (L~I A IR~5 p~(L~I B IR~> p'~(L~] R ~~ 5 (2.16) 

from which all previous results follow by taking into account that p~ = 
1 >p~ ( a >  1) and the normalization condition (L1 I R ~~ = 1. 

2.2. A Few (0+1) -Dimensional  Examples 

To make the formalism more transparent, we give here a few examples 
of (0+ 1)-dimensional cellular automata constructed from the transfer 
matrix formalism. This also gives the opportunity to introduce in a natural 
way some notations used in the theory of cellular automata. 

Example 1. Incommensurate Modulations in Time. Con- 
sider a linear chain of length N with competing first and second inter- 
actions: 

N N 1 

-f i l l=K1 ~ sis i+l-K 2 Z SiSi+2; KI,2>0; fi=kB T (2.17) 
i = 1  i = 1  

Since the interaction extends to two neighbours, the transfer matrix is 
a 4 • 4 matrix whose elements are 

[e2KI12K2 1 e -2< e 2x2 ] 
e 2K, - 21,:2 eZg2 e~Kl [ 

T =  / e2Kl e 2K2 e 2KI--ZK2 (2.18) 

L e2K2 e--2K1 1 e2Kl -- 2K2J 

Using the symmetry of T under flipping all the spins, one can obtain 
the four eigenvalues t],'~" and t~ corresponding to the even eigenfunctions 
and to the odd eigenfunctions, respectively. The stochastic matrix 
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corresponding to T is constructed following Eq. (2.8) and describes the 
time development of an automaton consisting of two sites. After some 
algebra one obtains that the matrix P is amenable to the following block 
structure: 

p =  

a b 0 0 

1 - a  1 - b  0 0 

0 0 c d 

0 0 e f 

(2.19) 

where a, b ...... f are given functions of K1,2. It is worth noting that the sym- 
metry reduction shows clearly that the largest eigenvalue comes from the 
even (upper) block, which is still stochastic, while the odd block is not. The 
stationary distribution is given by the right eigenvector of P corresponding 
to the eigenvalue one: 

Lb 1 1--a  
0 /> i0)  

0 

or, in the original spin basis of the matrix (2.18) 

[R1) ~ A exp(Kcr~ crY) 10); 10) =�89 + ItS) + ISt) + I$$)) (2.20) 

with A = [b(1 - a ) ]  1/2 and ~c = l n [ b / ( 1 -  a)] 1/2. Here o-~ is the Pauli matrix 
acting on spin i: a= 11")= 11"); ~z 1~)= _1~). From (2.20) the expectation 
value of l im t~{s l ( t ) s2 ( t ) )  is easily computed. The non-equal-time 
spin-spin correlation function decays exponentially with the relaxation 
time r ~ - ( l n  odd ]-  1 P . . . .  . Beyond the branching point p~dd~ p~dd, given in 
terms of the K1,2 as 

(cosh 2K1)+ =e4X2+ (e 4K2- 1) or tanh K 2 = t a n h  2 KI (2.21) 

the odd eigenvalues are complex conjugated and the exponential decay of 
spin spin correlations is modulated with a frequency depending con- 
tinuously on the parameters. Except for special values of the couplings, the 
modulation is incommensurate with the length of the elementary time 
step. (3~ The relaxation time has a cusp and is smallest at the branching 
(disorder) points (2.21). Note that one can interpret (2.19) as the dynamics 
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of a two-spin system described by the effective Hamiltonian given in 
Eq. (2.20): H eff = exp(Ksl s2). (31) 

As the temperature T ~  0, some elements of T become zero and one 
must carefully check whether the conditions for the transformation (2.8) 
are still valid. The model (2.16) has two ground states, a ferromagnetic 
state ('H'Tt" "'" or ~ - - . )  and a (2, 2 )  state, the spins forming one of the 
four possible I"T+~]'T+~ "'" configurations. In the (2, 2 )  ground state the 
transfer matrix is imprimitive, since p 2 =  1, and this corresponds to a two- 
cycle stationary behavior. Increasing further the size of the automaton, one 
may produce more and more stationary limit cycles at T =  0. Other ways of 
obtaining a large set of limit cycles will be discussed in Section 5. 

Example 2. An Enumeration Problem. Consider the problem 
of counting all possible configurations of particles in a linear chain of 
length N, provided two nearest neighbor sites cannot be emptyJ 32) This 
problem is equivalent to calculating the partition function of a one-dimen- 
sional antiferromagnetic Ising model in the critical external field at 
T=0./33/ After factorizing out the ground-state energy exp(lKI), one has 
for the transfer matrix the form 

N t N leading to t + = (1 _+ ~ ) / 2 ;  ZN = t + + for periodic boundary conditions. 
Note that the successive partition functions ZN form a Fibonacci sequence: 
ZN = ZN i + ZN_2, Z0 = 2, ZI = 1. The automaton rules are easily derived 
to be 

P = (2.23) 
X - 1  

(x = t+ ), which will produce an exponentially decaying correlation function 
with the relaxation time r - l = l n [ ( x / - 5 + l ) / ( , , ~ - l ) ] - - l n , ~ .  When 
some transition probabilities are zero or one (as in the present case), the 
model has some constraints and only special classes of configurations are 
allowed. If all the elements of P are zero or one, the rules of the cellular 
automaton are deterministic. Otherwise they are probabilistic. 

Iterating the matrix P for a long time, one obtains a chain of events 
where clusters of occupied sites are delimited by empty sites. Call an 
occupied site a living site and a cluster of occupied sites a living (or direc- 
ted) "lattice animal." The life span of these animals is given by the length of 
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the corresponding cluster. Now different questions may be asked: What is 
the average life expectancy? What is the (average) number of animals living 
exactly L iterations (time units)? In the one-dimensional case the animals 
do not have a structure, but in higher dimensions they may change their 
shape in time, and the number of questions one may ask varies accor- 
dingly. 

The probability of finding a cluster of empty cells with exactly the 
length L is given by the correlation function ( ( 1 - n i )  ni+lni+2,..., 
ni+L+l(1--ni+L~ 2)). An elementary Calculation of this nonlocal 
correlation function gives 

((1 - h i )  ni+lni+2,..., ni+c+ 1(1 - n i + c + 2 ) )  = 
2 L 

( t  + t  2 ) (2.24) 

In one dimension, of course, there is no problem in calculating such 
correlations. In higher dimensions, however, this is usually impossible. It is 
much simpler to calculate a two-point correlation function instead of (2.24); 
the two are related through a duality transformation (see the next section). 
A well-known problem in polymer physics is to enumerate the number of 
distinct directed animals (living clusters with different shapes) containing 
exactly n living sites, gn, without taking into account their interactions. In 
one dimension the answer is simply g,, = 1. The animal-generating function 
is defined as 

A(z)= ~ g . z"=  ~ z n -  z (2.25) 
n = l  n = l  1 - - Z  

For living (directed) animals the generating function has a simple recursive 
property related to causality. After being born (source), the sites may be 
occupied at time L + 1 only if at least one of the predecessor sites at L was 
occupied: 

A(z) = z[1 + A(z)] (2.26) 

leading again to the result (2.25). 

2.3. F in i te  Ce l lu la r  A u t o m a t a :  E l e m e n t a r y  Facts 

Here we review some well-known theorems regarding (finite) 
stochastic matrices (2~ and Perron-Frobenius operators. (34) In general a 
stochastic matrix may be reducible or irreducible, depending on whether it 
may or may be not reduced to a block form by the same permutation of 
rows and columns. This condition is best represented in graphical terms: if 
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one associates a directed graph pointing from i to j with the matrix element 
Pi, j > 0, then the condition for irreducibility is that the graph of the matrix 
P must be connected, that is, in the space of indices {i, j} from each point 
one can reach any other point. Otherwise, there would be points or groups 
of points one can reach but no longer leave. Such points are called attrac- 
tors (more precisely, they form the support of the attractors) and the 
dynamics is said to be contracting. The directed graph of the matrix con- 
tains important information about the dynamics of the system, (35~ including 
the support of the attractors, their basin of attraction, number of possible 
cycles, etc. The main question concerning cellular automata is related to 
the existence of a proper "thermodynamic" limit: as the size of the 
automaton increases, one wold like to make statements about the attrac- 
tors and their basin of attraction. Is it possible to define a density of points 
on these attractors? I failed in obtaining such a stationary density for 
"class  IV  ''(6) deterministic CA such as Conway's L/fe  (36) by using the 
methods of nonlinear dynamics. 12 The interesting "zoo" of configurations 
leading to a "class IV ''(6~ behavior seems to have a zero Hausdorff dimen- 
sion. 

The matrix elements of limN~ ~ px  are called limit probabilities and 
they correspond to the probabilities to reach i from j in oo time. If the 
largest eigenvalue of the matrix (which for normalized P matrices is unity) 
is not degenerate, the matrix is primitive; if there are q eigenvalues with 
unity modulus, the matrix is q-imprimitive. The matrix has a limit dis- 
tribution if the right eigenvector corresponding to the eigenvalue 1 is non- 
degenerate and nonnegative. Some states are negligible if they correspond 
to columns with positive elements on the right of some other main 
diagonal blocks (see Fig. 5a). When iterating P many times, the weight of 
these states diminishes and disappears in the N ~  oo limit. If a reducible 
matrix consists of several primitive blocks and some negligible states, then 
the limit probabilities r p ~  exist, and also have zero elements 1. i, j ,( 

corresponding to the negligible states. 
When the matrix is irreducible, there are only two possibilities 

(Figs. 5b and 5c): the matrix is primitive and then the limit distribution 
exists (ergodic Markov chain) or the matrix is q-imprimitive and one has 
the so-called q-island case (Fig. 5c). In this case P has q right vectors Zm 
with disjoint support such that Pzm = Zm + 1 m o d ( q )  and the right eigenvectors 
~b k corresponding to the q-eigenvalues on the complex unit circle are given 
by q 

~k = Z e2nimk/qzm' k = 0 ..... q-- 1 (2.27) 
m=0 

t2 For applying discrete nonlinear dynamics to CA problems see Ref. 37; for the random Ising 
chain see Refs. 38. 
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Fig. 5. Classification of stochastic matrices. (a) Reducible matrices: i and p stand for 
imprimitive and primitive blocks, respectively. (b) Irreducible, primitive matrix. (c )The  
q-island case: a q-imprimitive irreducible matrix. In the example shown the q = 5 cycle is 
(1 ~ 3 ---, 5 ~ 2 - ~ 4 - ~  1). 

Regarding every block (see Fig. 5c) as a single element, one gets a per- 
mutation matrix. 

These theorems are quite useful when dealing with finite cellular 
automata and can be appropriately generalized to probability-conserving 
integral operators. (34) Moreover, they allow us to discuss the possible 
mechanism of phase transitions occurring in such systems. 

2.4. Phase Transit ion Mechanisms in Cellular A u t o m a t a  

Our definition of a phase transition is related to the definition of the 
"partition function" (2.2), where we now group the eigenvalues according 
to their multiplicity D(c~): ZN.M =Z~ D(e)p~. The main contribution to 
this partition function in the large-(M, N) limit comes from the eigenvalues 
with largest modulus. A phase transition occurs when, as some external 
parameter(s) is (are) varied, the number of eigenvaIues with unity modulus 
changes, or, as explained later, when the degeneracy of a subleading eigen- 
value becomes exponentially large with N. Static phase transitions can be 
classified as first-order and as continuous phase transitions. Dynamic 
systems may have additional phase transitions, such as purely dynamic 
transitions, (39] where the correlations change from an exponential to an 
algebraic decay in time, but not in space, or transitions in nonequilibrium 
states.(4~ Dynamics is also much richer in universality classes, depending 

13 For another  example of nonequit ibrium transitions in lattice-gas models see 
J. Marro  eta/. (4I) 
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on the macroscopic conservation laws. (42) According to our mapping (2.8), 
we may expect to find this rich structure in our "static" ( d +  1)-dimensional 
models. Almost all phase transitions encountered in CA models have a 
pronounced anisotropic character: the scaling (if there is scaling at all!) of 
time is different from that of space. 

Our discussion of phase transition mechanisms will follow closely the 
classification of stochastic matrices shown in Fig. 5. The most "regular" 
form is when P is primitive and irreducible (fully probabilistic cellular 
automata). In this case no phase transition can occur for finite systems 
when the temperature T > 0 .  In order to have phase transitions in such 
finite systems one has to violate some of the conditions of the Perron 
Frobenius theorem. (2~ This may happen by letting some elements become 
zero (e.g., T ~  0), so that the matrix becomes imprimitive (see Example 2), 
or by continuing some of the parameters to unphysical values, as shown in 
the next example. 

Example 3. Phase Transit ion in 0 + 1  Dimensions. I n  this 
example we discuss a typical phase transition that may happen in a finite 
CA through an example given by Wu. (43) In this automaton we have a 
single variable 1, which may assume the values l = 0 ,  1,..., q - 1  and is 
updated in time according to the rules 

1 - a  
Pi, i=  a; P i , -  �9 iCj;  i,j=O, 1 q - 1  (2.28) 

' q - 1  . . . . . .  

This dynamics corresponds to the transfer matrix of a one-dimensional 
q-state antiferromagnetic Potts model. P can be diagonalized by a Fourier 
transform and one obtains two distinct eigenvalues: 21 = 1 and 22 (q 1/= 
(qa-  1)/(q- 1). The two eigenvalues are equal in magnitude 
(~'1 = --)~2,...,q 1) when 

2 
O ~ a , =  - q ~ l  

q 

implying a transition for 1 ~< q <~ 2. For  integer values of q this happens 
either for a = 1 or 0, corresponding to Tc = oe and, respectively, to Tc = 0. 
Continuing q to real values, one encounters a phase transition at some 
T~ > 0  temperature, with critical properties characteristic for one-dimen- 
sional static models/44) Since the eigenvectors of P, (2.28), do not depend 
on a, from the point of view of the CA this transition is purely dynamic. 

A different type of phase transition occurs when continuing the 
interactions constants to complex values. Going back to Example 1, the 
largest eigenvalue of the upper block of P given in Eq. (2.19) becomes com- 
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plex at the branching point a = 1 + b, and so does the partition function. In 
the cellular automaton description this is again a dynamic transition 
corresponding to the (static) Lee-Yang edge singularity. (45) 

If the conditions of the Perron-Frobenius  theorem are met, the right 
eigenvector IRj )  corresponding to the eigenvalue 1 must be positive and 
can be rewritten as 

I R l { S } ) = A e x p [ / ~ e f f ( { ~ } ) ]  10>=Aexp l -H  (a l~({s})] (2.29) 

where a { 1 0 ) = 1 0 )  Vk and H (a-l) is an effective (d-1) -d imens iona l  
Hamilton function. In analogy to the kinetic Ising model, (46) we will denote 
the problem defined by the H (a 1) as the static problem whose partition 
function is given by 

Z(J 1)= ( L I I R I )  = 2 exp[  H(d 1)({S} )] 
{s} 

This definition of statics leads also to a natural way of defining the entropy 
of a state IRa ) as the entropy related to the Z (~- 1) 

The time evolution of a cellular automaton involves only implicitly the 
static problem: what one can easily mesure is the gap G - ~  1, the inverse 
of the longest relaxation time. Applying the dynamic scaling hypothesis, (42) 
or equivalently, the anisotropic scaling formalism, (47) one can, however, 
determine both the static and the dynamic exponents (see Section4). 
Renormalization group studies (31'48) show that the dynamic transition is in 
the same universality class as for the corresponding class of (sequential) 
dynamics for usual statistical models. (42) From the point of view of the 
(d + 1)-dimensional model, however, the critical behavior corresponds to a 
Lifschitz tricritical point. (49) The critical behavior of fully probabilistic CA 
is not necessarely related to a static transition as described by the 
stationary distribution IR1). In Section 5 we will present a (1 + 1)-dimen- 
sional CA that exhibits a purely dynamic transition, the possibility of which 
has been pointed out recently (39) in connection with diffusion on fractal 
objects. 

Going back to Fig. 5, let us consider the q-island problem, which 
corresponds to a T =  0 commensurate phase of q-periodicity in the time 
direction. Usually, transitions from a commensurate phase to another com- 
mensurate phase are of first order, especially in three or higher dimensions. 
Moreover, continuous surface (such as wetting or roughening) transitions 
can still occur within the bulk commensurate phases or at first-order bulk 
transitions. A typical example studied in this context is a ferromagnetic 
Ising model with all spins fixed to point down (up) at the top (bottom) 
layer and with the first row of interactions antiferromagnetic. A domain 
wall is created at low temperatures at the top row: increasing the t e m -  
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peratures will eventually result in a delocalization of the wall. In analogy to 
this picture, one may imagine a cellular automaton where for the first time 
step the rules are different from the following steps: starting from an initial 
configuration with all spins down, the transient behavior of this CA will be 
different in the case of a localized or a delocalized wall. 

The next case is that of a reducible matrix. If the matrix consists of 
primitive blocks, the same analysis as above applies to each of the blocks. 
A more interesting case is when the matrix consists of one primitive 
block and negligible states. A typical example is the transfer matrix 
corresponding to the directed percolation. (3~176 Its distinctive feature is the 
existence of a so-called absorbing state, a state which is reproduced with 
probability one during iterations. In directed percolation once the system 
is "dry" (every site is empty) it remains so forever. From the theorems 
mentioned in Section 2.3 it follows that for finite matrices of this sort the 
absorbing state is always stationary. A phase transition may happen only 
in the thermodynamic limit when either: (a)the "escape" rate from the 
"infected" states into the absorbing state becomes negligible, leading to a 
reducible matrix with two distinct primitive blocks, or (b)when the 
density of negligible states becomes high enough so that 

lim s lim Z 2N 
N ~ r  N ~ c : c  > 1 

Let us discuss in some detail both possibilities. 

(a) If the matrix has two or more primitive blocks, then each block 
is in itself a stochastic matrix, so there are as many positive but disjoint 
right eigenvectors, which correspond to the eigenvalue 1 of each primitive 
block. Denote by IR~ ~)) and by (LI~/I the set of biorthogonal right and left 
eigenvectors with eigenvalues of unity modulus. Following Hamer, (511 
define as order parameter any physical quantity A for which 
(LI~) I A ]R] ~)) r  (c~r Then introducing P'=P+hAA (hA is the field 
conjugate to A), an elementary degenerate perturbation scheme shows that 
one has to find the spectral decomposition of the matrix 

I (L]~)[A IR~)); (L]~) I A ]R] ')) ] (2.30) 

The right and left eigenvectors corresponding to the largest eigenvalue of 
this equation determine all the coefficients in the linear combinations 

IR1) = a l  IR~ ~)) +a2 IRma)); (Ll l  =bl(L~)l +b2(LlZ) I (2.31) 
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Finally, in terms of these coefficients the order parameter is given as 

(L1] A J R , ) = a l b ~ ( L ~ ) l  A IR~ ~) ) + a2b~( L~)l A IR~ ~) ) 

+ a2bx(L~)[ A LR] ' ) )  + a~b2(L~')l AIR] =)) (2.32) 

Note that if the operator A is such that A I R ~ ) ) = 0 ,  then ( A ) =  
(L~ z~] A [R~e)). This phase transition does not break any symmetry; 
however, it might be a continuous one. A test regarding the universality of 
this phase transition mechanism is performed in Section 4. 

(b) The other possible mechanism for a phase transition is more 
subtle and does not require a change in the number of eigenvalues with 
modulus one. The simplest scenario for such a transition is that a sub- 
leading eigenvalue of the transfer matrix becomes exponentially degenerate. 
This degeneracy factor may boost this eigenvalue to become the leading 
term in the sum (2.2). Physically such a mechanism will happen when the 
metastable state corresponding to the subleading eigenvalue is highly 
degenerate; in other words, it has a lot of entropy. Entropy-driven trans- 
itions are common in hard-core liquids and usually are of first order. (52) In 
order to have a better understanding of such a mechanism, consider the 
following example. 

Example  4. T h e r m o d y n a m i c  Limit  f rom the  Transfer  
Matrix Formal i sm--A F e w  Subt le t i e s .  Consider the problem of 
finding all possible close-packed configurations on a square lattice for a lat- 
tice gas with nearest and next nearest neighbor exclusion. Equivalently, one 
must count in how many ways one can cover an N by M (N, M are even) 
lattice with squares of side twice the lattice constant. Let us use the row-to- 
row transfer matrix. If the number of columns is N, then there are 
2 x 2 u/2-  1 allowed states: every second site is empty or full (2N/2), times 
the number of sublattices (2), minus 1 (the completely empty state has no 
pair). Among these states there are three, namely the empty state 
( 0 0 0 0 . . . 0 ) - 1 0 ) ,  the every-second-up state ( 1 0 1 0 - . . 0 ) - l l ) ,  and its 
shifted pair ( 0 1 0 1 . . . 1 ) = ] 2 ) ,  which form a 3-cycle. Since T2 1 0 ) =  
T ( [1 ) +  12 ) )=2  [0) in this subspace, T2=2,  leading to two degenerate 

+.,f12 and one zero eigenvalues. All other states form pairs of 2-cycles 
involving eigenvalues + 1. However, their degeneracy equals 2 x 2 N/2 - 4 .  
Taking into account the corresponding multiplicities, we find for the 
partition function form 

ZN, M = Tr(T) M = [2(2M) 1/2 + 2(2 u/2 - 2)1 = 2[(2M) 1/2 + ( 2 N )  1/2 - -  2] 

(2.33) 

as also given by a direct counting. What one can learn here is that the 
result depends on the way the thermodynamic limit M, N-~ ~ is taken! 

822/49/1-2-[l 
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Taking either M ~ oo or N--, oo first leads to erroneous results: one must 
take M ~ N--* oo simultaneously! 

In the same spirit, one may imagine a situation when the leading 
eigenvalues of the transfer matrix are 21 = eN and 22 = e~Vp, where p < 1 is 
due to one-particle excitations. Let us assume that the degeneracy of 22 is 
D(2)~a  N, a >  1. Hence T r ( T M ) ~ 2 ~ ( 1  +aNpM). If M - *  oo first, then the 
partition function is given always by the 2~, while if N ~ oo first, then it is 
given by the degeneracy of 2 2 . Obviously, the thermodynamic limit 
depends on the way N ~ M - - ,  oo is taken, predicting a phase transition 
when ap ~ 1. More generally, such a situation may occur when a group 
(band) of nonleading eigenvalues have exponential degeneracy. I am not 
aware of any microscopic model calculation displaying explicitly this 
mechanism. I am, however, aware of a few examples where this point might 
have been missed. 

After this lengthy excursion, let us go back again to Fig. 5. The case of 
a q-island imprimitive block and some negligible states is very similar to the 
situation discussed above. This can be most easily seen by considering the 
operator Pq, which will consist again of an imprimitive block and negligible 
states. Apart from some modulations, one expects the critical behavior to 
be in the same universality class with the directed percolation problem. The 
same observation applies to more complicated structures involving many 
different imprimitive blocks with different periodicities and negligible states 
(P has to be raised to the smallest common multiplier of these 
periodicities). A quite different critical behavior is expected for nested 
imprimitive blocks, or when there are matrix elements coupling blocks with 
different periodicities. 

3. EXACT RESULTS FOR PROBABILISTIC CELLULAR 
A U T O M A T A  

In this section we present a few exact results concerning probabilistic 
CA in ( d +  1) dimensions. Some of these results have been presented 
previously in different contexts, ~27's3 60~ but will be summarized here from a 
unified point of view. First we discuss the problem of symmetric CA; in this 
case we show that the stationary distribution has a short-ranged direct 
product form and that the equal-time correlations in the stationary state 
can be calculated from a d-dimensional static problem. Second, we treat a 
class of CA we call linear or free models because the equations for the 
correlations decouple. For  these models the dynamic critical exponent 
equals exactly z = 2. Generalizing the notion of duality, we show how to 
construct duality relations for CA, and, finally, we briefly discuss the 
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integrability conditions for statistical physical models with interpenetrating 
faces. Throughout this section we shall often use as illustration the (1 + 1)- 
dimensional automaton shown in Fig. 3b. 

3.1. Disorder Solutions 

Many statistical physical models with competing short-range interac- 
tions can be solved partially--which in our context means that one obtains 
the stationary distribution [R~) and related equal-time correlations--on 
special subspaces of the external parameter space. (27'56-58~ Such solutions 
have been found independently in many fields, for example, in the theory of 
crystal growth, (54) quantum chains, (55) and models for adsorbate systems 
(for review see Ref. 59). In the context of CA they were mentioned first by 
Domany and Kinzel. (5~ The name "disorder" is not always appropriate 
and was given for historical reasons, since the first solutions were found in 
one- and two-dimensional exactly soluble statistical models. (53) Here the 
presence of a unique stationary state implies that this subspace lies on the 
paramagnetic (disordered) phase. However, it became clear that in some 
cases a duality transformation will map these solution into solutions lying 
on the ordered (ferro- or antiferromagnetic) p h a s e .  (6~ The study of these 
solutions is a field of active interest, since they provide (at minimal cost) 
strong insights into the phase diagram of complex models, (55) allow for the 
exact calculation of the generating function of directed animals in two and 
three dimensions, (61)'~4 shed light on unexpected symmetries, (64~ and 
constitute the starting points for systematic expansions. (65~ 

The disorder-type solutions are related to an exact dimensionality 
reduction to a ( d - 1 ) -  or a 0-dimensional static problem as defined by 
[R 1 ) - A exp [-Herr( { s } ) ], where H err is an effective Hamiltonian with short- 
range interactions. This is the case for all time-symmetric CA. In order to 
see how this comes about, consider two types of characteristically shaped 
w(s[ {s'}) interaction faces. The most typical one is that of Fig. 3b, which is 
also shown in detail in Fig. 6a. This type of face has a "conical" structure 
allowing explicitly for the construction of contracting processes. 
Throughout this subsection we shall work on the interaction representation, 
the independent parameters of the partition function being the couplings of 
the energy functional. If the energy of a face contains only one- and two- 
spin interactions between "children" spins and "parent" spins, then the 
interactions between parent spins can be redistributed in such a way as to 
obtain a symmetric transfer matrix. Let us explain this on the automaton 

14 For a direct calculation see Hakim and Nadalt62); for compact  animals see Derrida and 
Nadal.(63t 
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a) 

b) 

Fig. 6. 
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c) 

Graphical picture of the disorder solution. (a) The graphical representation of the 
original stochastic matrix and the corresponding elementary face. (b)The repartitioning of 
couplings G leading to a symmetric matrix and to a symmetric elementary face. Note that 
dashed (dashed-dot) lines are one-half (one-quarter) of the coupling value represented by a 
heavy line. (c) From bottom up: acting with the left eigenvector removes the bonds between 
bottom spins, which are then summed up. As a result, the left eigenvector moves one time step 
upward. 

shown in Fig. 6. Consider  first the par t  of the face weight # that contains 
! ! S t �9 only the interactions between the spin si and the spins (si_ 1, s~, i+ 1). 

! ! t w(si, si 1, s;, si+ 1) = exp[G(s~_ 1, s;, si+ 1)] 
Si  

j = i  1 , i , i  + 1 

-} -Kl3Si_lSi+ 1 + Ls'i ls~s'i+l] (3.1) 

All the parameters  in the expansion of  G are functions of the original 
couplings contained in #. By construct ion,  the full face weight of the CA 
[-which satisfies the normal iza t ion condit ion (2.11)] is 

w(sils'i l , s l ,  s ' i + l ) = ~ , ( s . s '  ' s' - i - l ,  si, i + l ) e x p [ - G ( s ' i _ l , s i ,  si.+l)] (3.2) 

As indicated in Fig. 6b, the interactions contained in G are split in half, half 
being assigned to the top row, half to the b o t t o m  row. The resulting 



Cellular Automata  and Statistical Mechanical  Models 163 

symmetric transfer matrix is no longer stochastic. The elementary face is 
now given by 

wsyrn(si_ l,  Si, Si+ I ; St i -1,  S;, Sti+ 1 )  

= w(sil s'i 1, s;, s~+ 1) exp[ --1G(si_I, Si, Si+ I)] exp[ - �89 1, s;, s'i+ 1)] 

Acting with this operator on the vectors 

(Lll=exp[�89 1,si, si+l)] 
(3.3) 

! t IN1 ) = exp [�89 1, si, si+ 1)] 

one finds that the bonds moved to the bottom row and the bonds remain- 
ing on the top row will be exactly cancelled by (Lll and IRl), respectively. 
By summing up all the remaining uncoupled spins, one recovers the same 
left and right eigenvectors [use Eq. (3.1)]. The Perron-Frobenius theorem 
identifies the positive vectors (3.3) to be the ones corresponding to the 
largest eigenvalue (one)--this completes the proof. The calculation of 
equal-time correlations involves the solution of the static problem defined 
by the effective Hamiltonian H err, which in this case corresponds to the 
( d -  1)= 1-dimensional problem: 

Z(~t- 1) = (L,  LR1) = ~ H expEG(s~_l, s, ,  si+l)]  
{s} i 

This problem is similar to the problem considered in Example 1, so the 
static problem corresponds to a (0+ 1)-dimensional CA, illustrating the 
(d) ~ ( d -  1 ) dimensionality reduction. Moreover, for H = L = 0 and at the 
disorder point (2.21) the spacelike correlations of the (1 + 1)-dimensional 
CA will change in character and become incommensurately modulated. 

The second example is the chekcerboard lattice of Fig. 2a, also dis- 
played in Fig. 7a. There are two distinct possibilities for disorder-type 
solutions in such models. The first class consists again of models with one- 
and two-spin interactions only. In this case the distinction between hatched 
and white squares is purely arbitrary. If all the couplings are assigned to 
the hatched squares, the condition (2.11) reads 

Y~ w,,(sl, s2ls'ls'~)= 1 
S1,$2 

If they are assigned to the white faces, the very same condition is 

wD(sl, s21sis'~)= 1 
s1,$ 2 
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This symmetry corresponds to the reversal of time for the two-time-step 
transfer matrix (2.4) or to the (time revesal+elementary space shift) for 
the one-time step transfer matrices. The correlation function of two spins on 
the same row (time slice) is obtained by summing the upper part of the 
lattice in the usual way (summing over wi )  and the lower part of the 
lattice using now the white squares (w[]); for the static problem one ends 
up with a one-dimensional Ising problem with alternating couplings, (66l 
as illustrated in Fig. 7a. The second class of solutions may be obtained 
when the hatched squares contain quite complicated couplings but 
W I ( S t ,  $21S'1SI2)= W I ( S ' I ,  s'=lSl, sz). The same method as the one discussed 
before again can be applied, since the left and right wave functions have the 
following form: 

(Lll = exp Li~l -- H s i -  s2is:i+ 1 + s=i_ l S:i 

IN/2 
, R I )  = e x p  L i ~  ( - __ , K1 K3 

The couplings KI/2 and K3/2 cancel the bonds connecting the top and 
bottom rows of spins of the white faces. After summing the pairs of 
(independent) spins on the top (or bottom) row of spins, one regains the 

KI K) KI K3 KI K3 KI K3 
4" + + +X .... x ++ + +x .... x+ + ++x --- -x++ + +x--- -X 
Z- .... T: - - -  I L l )  ~-' - . . . .  

x+ ++ +x . . . .  x + + + + x _ _ _ _  <L I [  . . . . . . . .  
K1 K3 K1 K3 K1 Ks K1 K3 

-K3 K 1 -K3 KI 

o) b) 
]Fig. 7. Disorder solution for the checkeJ~board lattice, (a) First~ the two-spin couplings K 1 

and K 3 are split in half, one half Being included in Wl, the other half belonging to w D. 
(b) When the left eigenvector acts on the bottom (top) rows of the white squares it cancels the 
half-couplings [the "+" ("-") lines correspond to plus (minus) half of the original 
couplings] belonging to w I (bottom) and w~ (top). A chain with alternating couplings 
results after summing over the crossed faces. (b)For time-symmetric faces wi(s l ,  s2Is'l, s'2) 
only the wi  are summed up; the notations are the same as in (a). A row of independent spins 
results. 
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vectors (3.3), but shifted by a lattice constant. Since the full faces have the 
symmetry w �9 (s l ,  SzlS'l  s '2 )=  w �9 (s'l, s '2 l s l ,  s2), the one-step transfer matrices 
are now i nvar ian t  under time reversal. The calculation of equal-time 
correlations is shown in Fig. 7b and leads to 

{s} 

This example illustrates a reduction to a 0-dimensional problem, since 
Z (d=~ is equivalent to a static problem of independent spins in an external 
field. (6~ This way of finding disorder-type solutions in staggered models 
works in any (d + 1) dimension. (58) The underlying static problem is (d)- or 
(0)-dimensional. 

Finally, consider a rotated square face with a diamond shape, as 
shown in Fig. lb. For the IRF model a general condition for the existence 
of a disorder solution was given by Baxter. (sS) As in (3.1)-(3.3), one can 
show that this condition can be also rewritten in the form (2.11) by 
a proper reassignment of the edge bonds. The diamond face must be 
symmetric: 

w(si I s',_l, s;, s; +1 ) = w(s;I s; 1, s;, s; +1  ) 

and the dimensionality reduction is again from (1 + 1) to 1 dimension. 
For (1 + 1)-dimensional time-symmetric CA one has therefore an 

underlying one-dimensional static problem with short-range interactions, 
which does not have a phase transition at T >  0. For (2 + 1)-dimensional 
CA, however, such a transition may exist and the calculation of [RI ) ( H  erf) 
is useful when determining the transition point (see Domany(S7)). Here the 
name "disorder solution" is not misplaced: it is downright wrong. 

A very similar approach can be applied to continuum models and it 
has been successful in giving an alternative treatment of the problem of 
critical dynamics. (48) 

In concluding this part on disorder solutions, let us summarize our 
findings: 

(a) CA with "conical" faces are symmetric under time reversal / f f in  
the interaction representation the face Boltzmann factor w contains only 
one- and two-spin interactions between the two different time slices it 
c o n n e c t s .  

(b) CA with checkerboard-type faces or with diamond-type faces are 
symmetric in time /ff their Hamiltonians contain only one- and two-spin 
interactions v if their faces are symmetric when reflected on the time 
direction. 
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(c) Every probabilistic CA that is symmetric under time reversal has 
a corresponding static Hamiltonian whose interactions extend at most to 
the maximal spatial length of the original face. 

Points (a)-(c) generalize the result of Grinstein et aL ~3~) Furthermore: 

(d) As a consequence, probabilistic (1 + 1) CA that are symmetric 
under time reversal do not have phase transitions for temperatures T >  0. 

3.2. Linear M o d e l s  

By linear models we mean CA models whose elementary faces contain 
in the weight representation only two-spin products: 

P({si}, {s~})=I~w(sil{s'~}); w(si,{s't})=~(l +~i aisis'z)>/O (3.4) 
i 

where si = +1, and I indexes the spins s' interacting with si. The form (3.4) 
can be easily generalized to any q-state model; then the constant changes to 
1/q and the term sis'~ to 6s,.~.), with ~ being the Kronecker delta-function 
and si = 0, 1,..., q -  1. An elementary calculation shows that 

(s ,>,+~- Y. s~R({s}, t+~) 
{s} 

= E E ,~ I1 w(,ij {s~})R({s,}, t) 

= z H ,s, ,..,,].,,s,. , ,  
{~} {s'} 

= skw(s'~l  sK  
s '  k t 

=Y, aK(SK>, (3.5) 
K 

We have used only the gauge symmetry ~,f(s)=2,f(-s , ,  the nor- 
malization condition ~2, w(sl {s}})= 1, and Eq. (3.4). Similar equations 
can be obtained for multispin correlations; for example, for two-spin 
correlations one obtains 

(s~sz),+ =(~S'kS, W(S'kI{SK},W(S,I{Sc}))=~aKaL(SKSL), (3.6' 
Sk SI t 

In this "spin correlation" basis the transfer matrix splits up in blocks. 
Within each block it can be diagonalized by the generating function 
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method, (46) or, in the continuum limit, by a Fourier transform. This 
decoupling of correlation functions suggests that the continuum limit of 
this model is related to a free field theory with an analytic gap, as reflected 
by the fact that the dynamic critical exponent always assumes its mean field 
value z = 2. 

The derivation given here can be repeated for any discrete (or con- 
tinuous) variables. A special case of these models has been discussed by 
Choi and Huberman. (67) The interest in these linear models is motivated by 
two facts: first, such models may constitute a fair approximation of more 
complicated models, in the same way as the free fermion approximation 
have been found useful in deriving phase boundaries in statistical physical 
models. (68) Second, they may constitute a standard starting point for 
diagramatic and/or series expansions when the nonlinear part of w is small 
compared to (3.4). It might be of some interest to consider the statistical 
physical models whose face Boltzmann factors are such linear functions of 
the variables: they are exactly soluble models in any dimension. 

A further generalization of the (3.4) form seems possible when non- 
local (disorder-like) operators are introduced. (4~ The correlation functions 
are still decoupled, but Eq. (3.6) will contain terms proportional to the 
distance between the two spins. 

3.3. Duality T r a n s f o r m a t i o n s  

Duality transformations have been quite useful in statistical 
mechanical systems. Such transformations relate the high-temperature 
behavior of a given model to the low-temperature behavior of another 
(the dual) model. If the two models are identical, it has the property of self- 
duality, which allows for the determination of the critical point and for 
values of thermodynamic functions at criticality when the model under 
consideration has only two distinct phases. Moreover, duality may shed 
light on the nature of low-temperature excitations, hence laying the ground 
for a more physical approach to the problem. 

In the context of CA one must distinguish two main possibilities: 
if the static problem is known and the corresponding Hamiltonian is 
short-ranged, as is the case for time-symmetric CA, then in principle the 
d-dimensional static problem may have a duality transformation on its 
own: we call it a static duality transformation. On a more general level, the 
full ( d+  1)-dimensional problem (2.1) might also have a duality transfor- 
mation, which we shall call a dynamic duality transformation. The main dif- 
ficulty in deriving such a general duality transformation is related to two 
facts inherent in CA models: complicated multispin interactions including 
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odd products of spins. In addition, some of them are necessarily negative 
("antiferromagnetic"). When performing a dynamic duality transformation 
for the full (d+ 1) CA Hamiltonian (which we shall call a dynamic duality 
transformation) one often obtains a dual model more complicated than the 
original one, with couplings that might be outside the physical regime (they 
assume complex values). However, this establishes a correspondence 
between the nature of phase transitions in CA and phase transitions taking 
place for complex values of interactions. (61 63,69) 

The duality relation is performed by graphical methods or within the 
transfer matrix formalism (see Ref. 70 for a review). Recently, a simple 
algebraic method was applied to models having odd interactions, (71) a fact 
important for models with complicated interactions. However, the 
derivation used implicitly the fact that the couplings are positive. In the 
next example we show how to generalize the method when one has also 
negative couplings. 

Example 5. Duality Transformation for a (1 + 1 )  CA. Con- 
sider a triangular lattice, represented as a square lattice with diagonals in 
one direction only (Fig. 8a). Let us consider as interactions an external 
field, a three-spin interaction term in the triangles pointing in the SW direc- 
tion only, and the diagonal two-spin interactions. Thus, the partition 
function will be the trace over the products of local Boltzmann weights 
shown in Fig. 8a and given by 

W(S  1, S2,  S3,  $4 ) ~- eHsl  + LSl s2s3 + Ks2s3 

= cosh(H) cosh(L) cosh(K) 

x [(1 +V,VLVK)+(VH+VLVK)Sl 

+ (VL+VHVK) SlS2S3+(VK+VHVL)S2S3] (3.7) 

where V x - t a n k ( X ) .  Note that the different spin products in the 
Hamiltonian form a cyclic subgroup and that the CA condition for this 
model is simply 

VK + VHVL =O (3.8) 

implying that either one or all three coupling constants H, L, K are 
negative. Following the method of Giacomini, (71) one introduces a link 
variable for every spin product in (3.7): these link variables assume the 
value 1 or 0, depending on whether in the product of w a given term is 
present or not. One gathers next all the link variables connected to a given 
spin, as shown in Fig. 8b. The term corresponding to (3.6) and spin sl is 

Kmlenl + n2-t- n4 + m2 + m4 (3.9) cosh(H) cosh(L) cosh(K)(1 + VH) e L"~ + ol 
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S: $4 

s. s2 

Q) b) 
Fig. 8. Duality transformation for models with complicated interactions. (a) The elementary 
face for a triangular lattice; three different interactions are allowed on the triangle sl, s2, s3. 
(b) All link variables connected to spin Sl: ml&4 are related to the two spin couplings along 
the SE-NW diagonal; nl,2,4 are link variables for the three-spin interactions (hatched- 
triangles). 

with the indices shown in Fig. 8b. By using the identity ( m = 0 ,  1, 
# =  + l = l - 2 m )  

v m = ( Ivl )1/2  #o(-X)eK*~; e - 2 K * =  Ivl 

where 

10 if x > 0  
O ( x ) =  if x~<0 

and the ~t's are spinlike link variables (m + #, n ~ v). The summat ion  over 
the original spins leads to 

( s inh (2H)  sink(2L ) s ink (2K) )  a/2 
�9 8 �9 ~ exp(L*Vl + K*#I + H*VlV2V4#2/~4) 

(3.10) 

where 7~ contains the p roduc t  of  link spins corresponding to negative 
couplings. If, for example, K < 0 ,  then Z = # a .  Using the gauge transfor- 
mat ion  vi = #tvi, i = 1, 2, 4, one finds that  the spin #1 decouples and can be 
summed up. The = factor in front of the exponential  leads to a sink 
function instead of the usual cosh. Defining 

$1 = 2 s ink(H* + L* + K*); 

$3 = 2 s ink(H* - L* + K*); 

$2 = 2 sink( - H *  - L* + K*) 

S 4 = 2 sink( - H*  + L* + K* ) 
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we can expand the elementary face weight W dual  of the dual model as 

W dual = A + Bv 1 + Cv I Y21)4 -~ Dv2v  4 (3.11 ) 

with 

A = 1(S~ + $2 + $3 + $4); B = �88 - $2 - $3 + $4) 

C ~- I ( S  I - S 2 -~- S 3 - $ 4 ) ;  D = I ( S  1 + S 2 - S 3 - $ 4 )  

Comparing (3.11) to the second part of (3.7), one obtains the duality 
relations: 

D Dt _{_ D D D D C 1.) D .jr_ D D V L I) K B vDL Jr- IJ H1) K V L V g D (3A2) 
, .D . .D. .D A 14 - ' D ' D ' D  A 1 + UHULU K "  D .  D. ,D m 1 -~- V H U L U  K U H U L U  K 

At a first glance the model seems to be self-dual at least it has the same 
interaction structure. A more careful study of this equations reveals that in 
general the high- (low-) temperature region H, K, L ~ - 0  (oo), although 
mapped into the same model, corresponds rather to some "unphysical" 
(complex) values of the couplings. On the disorder line (3.8) $2 = 0, so that 
some combination of the couplings g dual, K dual, L dual must go to - oo. This 
means that the disorder line is mapped by the duality into an order line 
lying on some low-temperature region or outside the physical region. A 
very similar situation has been encountered in the study of disorder lines in 
the triangular Ising model or the IRF model(6~ here the disorder line was 
found to be mapped into the nonphysical region (complex couplings). (51) 

The same procedure can be applied to three-dimensional systems as 
well. Consider, for example, an Ising odel on a bcc lattice (or any close- 

[] 

[] ~ �9 D 

~ [] % 

% ~ [] 

O 

Q) b) 
Fig. 9. The elementary tetrahedron and an upper view of the three-dimensional close-packed 
lattices. The spins denoted by crosses, circles, and stars form different layers of stacked-shifted 
triangular lattices. 
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packed 3-dimensional lattice) with interactions in every second elementary 
tetrahedron, as shown in Fig. 9. The interactions consist of an external 
field, a four-spin term coupling all the spins on the corners of the elemen- 
tary tetrahedra, and, to close the subgroup, a three-spin interaction 
between the three spins at the base of the tetrahedron shown in Fig. 9a. 
Again, the CA condition (2.11) is given by Eq. (3.8) using the same 
arguments as previously. Models with only two-spin interactions [in 
(1 + 1) dimensions the triangular lattice, in (2 + 1) dimensions the hcp or 
other close-packed lattice] can be interpreted as a "staggered" model by 
assigning all couplings to every other (alternating) triangles or tetrahedra. 
The CA conditions are similar to (3.8). All these models have "dynamic" or 
global duality relations of the kind shown in the previous example. For 
symmetric CA, when the effective Hamiltonian corresponding to (L1 I R1 ) 
is known and short-ranged, the "static" duality transformation might be 
used to predict the exact location of the phase transition. ~57) 

Before finishing this subsection, we mention that the duality transfor- 
mation can be formulated also in terms of lattice-gas variables ni = 0, 1, as 
illustrated in the following example. 

Example 6. Dua l i ty  Transformat ion  in Terms of Lat t ice-  
Gas Variables. Let us consider again the triangular lattice of Exam- 
ple 5, but express now the energy of a basic triangle in terms of the 
occupation variables n, n', n " =  0, 1 as 

- f i l l  = ~ [/an + J2n(n' + n") + J3nn'n"] 
v 

(3.13) 

where Z v means a summation over the down-pointing triangles only. 
Introducing the notation z = e "/kr, ~ = e J~/kr, and/~ = e s3/kr and using that 
e x" = 1 + (e x - 1 )n, we can expand the Boltzmann factors as 

e / 3 H = ~ I { [ l + ( ~ - l ) n ( n ' + n " ) ] [ l + ( f l - 1 ) n n ' n " ] z n  } (3.14) 
27 

which corresponds to the high-temperature expansion in the spin variables. 
Introducing three sets of "link" variables corresponding to the products 
tl =- nn', tz =- nn", and t3 - nn'n", one can now perform the summation over 
the old 

{nx} 

variables. Summing up the term 1 from the product gives (1-l-Z) N~ (N+ is 
the number of down-pointing triangles); summing up the linear terms leads 
to two different kind of fugacities for tl. 2 and t3, respectively: {1.3 = 
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(c~, f i -  1 )/(1 + z) 2. Interactions (usually short-ranged) are the result of sum- 
ming up higher order terms. Sometimes two neighboring t variables are not 
compatible with any original configuration; in that case a nearest neighbor 
exclusion must be assumed. Note that for large negative values of the 
original couplings the dual fugacities ff become negative, showing again 
that the "dynamic" duality relations will map the original model into the 
"unphysical" region of the dual model. This type of duality relation was 
used by Dhar (61) to calculate the generating function of directed animals in 
two and three dimensions. 

3.4. Fully Integrable Cellular Automata 

Of special interest are cellular automata that can be solved by the 
generalized Bethe Ansatz or by using the inversion relation. (19) Such models 
are called fully integrable in statistical physics and quantum field theory 
because one can solve in principle for every eigenvalue and eigenvector of 
the transfer matrix. Full integrability is related to the existence of com- 
muting transfer matrices (or to the factorization of the scattering matrix S). 
For two-dimensional IRF models, the condition for two row-to-row trans- 
fer matrices with a different set of couplings to commute can be cast into 
the local Yang-Baxter generalized star-triangle equation (see Fig. 10): 

2 W(SI' $2' $7' $6) W;(S6' $7' $4' $5) W"(S7' $2' $3' $4) 
s7~ +1 

= ~ w"(s6, Sl, sT, ss) w'(s~, s2, s3, sT) w(s~, s3, s4, ss) (3.15) 
s 7 -- +1 

This equations must be true for any value of the spins Sl ..... s6, leading to 
an overdetermined set of nonlinear equations for the couplings contained 

S 5 $4 $5 S4 

S 7 

S6 W ~ $ 3  $ 6 ~  W' _ S3 

$I $2 $I S2 

Fig. 10. The generalized sta~triangle transformation. The faces denoted by w, w', w" have 
different values for the couplings but the same interaction structure. On both sides one has to 

sum s 7. 
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in w, w', and w". An exhaustive analysis of the solutions of these equations 
for even interactions has been performed/72) The solutions that do not 
correspond to one-dimensional models in disguise basically correspond to 
three classes: the symmetric eight-vertex model, the (asymmetric) six-vertex 
model, and the free fermion model. (19) An exhaustive study of the CA 
solutions of the IRF models has also been done (6~ and the conclusion is 
that there are no common points of the two manifolds except at T = 0, with 
one notable exception: the free fermion model has a disorder line--actually 
one found among the first. ~53) Along this disorder line the free fermion d =  1 
model reduces to the linear model defined in Section 3.2. Note that the 
kinetic Ising model with the Glauber transition probability corresponds to 
a free fermion model (46) and is also a typical example of a linear model. 

One can generalize the star-triangle equations of the IRF model to 
three dimensions. For  the interactions-round-a-cube (IRC) model one can 
derive that two plane-to-plane transfer matrices with a different set of 
couplings will commute if the tetrahedron equations ~73) are satisfied. An 
interesting question is whether in three dimensions there exists a class of 
models generalizing the two-dimensional free-fermion models and whether 
such models have a common manifold with the linear CA models. A more 
important question is the problem of integrability conditions for (even two- 
dimensional) models with interpenetrating faces. It is known that for fully 
integrable models the commutation relations must be fulfilled also for finite 
matrices (here finite automata in the spacial direction)(72); this seems to be 
the right direction for starting the study of fully integrable dynamics. 

One cannot close this section without mentioning that from the point 
of view of cellular automata such exact results seem at first glance 
interesting but not important--especially for those who believe only in 
deterministic CA. My opinion is different. I think that these types of 
analytic results might be very useful: the fully integrable models, for exam- 
ple, have an infinite number of conserved charges (integrals of motion). We 
may soon learn how to encode information in these charges, which are not 
affected by the dynamics of the system and can be retrieved at any later 
time. Moreover, since these charges are macroscopic objects, this kind of 
information storage would be also resistant against local noise. 

4. A P P R O X I M A T E  A N D  N U M E R I C A L  M E T H O D S  

The main goal of this section is to show how different approximate 
methods borrowed from statistical physics may be adapted to the study of 
cellular automata. Many of the points one could emphasize in this context 
have been extensively presented before. (3~ For  the sake of simplicity I 

15 For a review and further references see Kinze l .  174) 
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shall consider a model that generalizes the well-known problem of the 
directed percolation; for a review of the subject and its many ramifications 
see Kinzel. ~74/ The model has the structure shown in Fig. 3a with the 
probabilities given as 

w ( l l 0 , 0 ) = p o = 0 ;  w(llO, 1)=w(lll, O)=pl; w(ll l ,  1)=p2 (4.1) 

]000 ..... 0) is an absorbing state because P0 =0. The phase diagram of the 
model is shown in Fig. 11. In the ( 0 )  phase the CA will always fall into 
the absorbing phase after a finite amount of time, while in the "infected" 
phase (n C 0 )  an "eternal" cluster, percolating in the time direction, is 
present. This cluster can be described as a linear combination of states 
having some nonzero average occupancy. In order to understand better 
this phase transition, the most obvious and simplest choice is to start with 
some kind of mean field approach. 174) Let us suppose that the main feature 
of the stationary state in the infected phase is represented only by the 
concentration of occupied sites and for the moment let us neglect all other 
correlations between the sites at equal times. Then one may write the mean 
field equation 

n(t+l)=poEl-n(t)]2+2pln(t)El-n(t)]+p2n(t) 2 (4.2) 

1.0 

Pz 

0.5 

/ 

Y / 
O J 
0 

<0> 

! 

Cl<nr O> 

/ [  

I 
I 
I 
I 

I I [ 

0.5 

I 
I 
I 
I 

Pl Cz 1.0 
Fig. 11. The phase diagram for the generalized directed percolation problem. The mean field 
result is indicated by the broken line. Numerical results using finite-size transfer matrix 
calculations and renormalization group analysis are shown by the continuous lineJ 3~176 The 
time dependence of the model at the points/ ,  C1, and C2 is compared in the following figures 
for simultaneous and sequential updating dynamics. 
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where we have tacitly assumed that the average occupancy is homogeneous 
and does not depend on the site i. For  the directed percolation problem, 
P0 = 0, and one obtains two possible stationary solutions, ~1 = 0 and /~2 = 

( 2 P l -  P2)/(2p1 - 1). The mean field critical line is Pc = 1/2; for pl < Pc the 
first solution is stable, while for Pl > P~ the second one is stable. This is a 
phase transition corresponding to the directed percolation transition, with 
the mean field exponents v = 1/2, z = 2, 7 = 1, etc. ~74~ The situation is quite 
interesting along the line P2 = 1. If pl = 1/2, n( t  + 1 ) =  n( t )  identically, while 
for Pl < 1/2, ~1 = 0, and for Pl > 1/2, /72 = 1 is the stable solution. It is quite 
obvious that the phase transition on this line is quite different from the 
bifurcation-type transition at p~ = 1/2, P2 < 1. The former is an Ising-type 
transition (in the field direction), while the latter is in the universality class 
of directed percolation (or CA with one absorbing state). The mean field 
approach shown above is exac t  for the linear models introduced in 
Section 3. 

As in the theory of fluids, one can derive an infinite set of coupled 
equations for the different correlation functions. By truncating this set of 
equations one may obtain a better estimate of the critical l ine--a very 
similar approach has been proposed for the L / f e  (36) rules. ~75)'~6 Further- 
more, it is possible in general (not only for the directed percolation 
problem) to use the variational methods developed in connection with the 
transfer matrix formalism. (2~) 

A very typical feature of the directed percolation problem is that the 
corresponding transfer matrix is reducible; all matrix elements 
corresponding to the probabilities of going out from the absorbing state 
are zero. The transition is not related to a spontaneous symmetry breaking 
as in usual second-order transitions, but seems to be only a function of this 
reducibility property of the transfer matrix. In order to check that indeed 
this is the case, we have considered a sequential updating procedure rather 
than the simultaneous one. This is based on the following simple obser- 
vation: if the transfer matrix is 

e,o _ t 
e s , s '  - -  H W(Si IS' e_~,si+~) (4.3) 

i=e,o 

for even (e) and odd (o) time steps, respectively, then one can construct a 
different stochastic operator, namely 

t S t ze:s ~ = ~'. w(s i [s i  1, i+1) (4.4) 
i = e , o  

The even odd updating procedure breaks the translated symmetry of the 
operators P and L. A remedy to this problem is a trick we shall also use 

~6 For a different approach see Falk. (76) 

822/49/1-2-12 
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later: take the original lattice (shown in Fig. 3a) and double the number of 
sites, so that one obtains the geometry shown in Fig. 3b. If furthermore one 
introduces the weights Wnew(n I In2,  n3,  n 4 ) =  Wold(n 1 In2,  n4) , where WoId is 
given by (4.1) and Wnew by 

W.~w(1 IO, O, O) = po = O; 

Wnew(1 ] 1, 0, 0 )=  Wn,w(1 10, 0, 1)= Wnr 1, 1, 0)--Wnr ]0, 1, 1 ) = p l  

Wnew(l]l, 0, 1)= Wn~w(lll, 1, 1 )=p2 (4.5) 

one updates at the same time two independent but identical automata. In 
this formulation P becomes translational invariant, and so does the 
corresponding Liouville operator L: 

t t St Ls,s,=~Wnew(SilSi-l ,si ,  i+l) (4.6) 
i 

It is easy to check that L is also a stochastic operator normalized to N 
(number of spins in a row) rather than to 1. Such a change from 
simultaneous to sequential dynamics is called in statistical physics the 
"Hamiltonian limit" and it corresponds to an infinitely strong anisotropic 
limit of couplings in the space and time direction, finally leading to a con- 
tinuous time variable. If the anisotropy operator is not relevant, that is the 
singular behavior of the models represented by (4.4)-(4.6) is the same, the 
Hamiltonian formulation has several technical advantages over the 
simultaneous dynamics (Euclidean formulation). Unfortunately, in the case 
of the directed percolation one cannot use the usual arguments supporting 
the Hamiltonian limit (see Ref. 77 for a review). In Figs. 12a-12c we show 
a comparison of the simultaneous dynamic behavior (4.4) and that of the 
sequential dynamic behavior (4.6) close to the points /, C~, and C2 of 
Fig. 11. The simulations were done using a Monte Carlo algorithm, with a 
time scale twice as long in the sequential case as in the simultaneous one. 
One can clearly see a similar behavior in both cases, with the point P2 -- 1 
(Ising case) being different from the P2 < 1 behavior. 

The operator (4.6) is easier to diagonalize than the transfer matrix 
(4.4): we have calculated numerically the largest two eigenvalues of finite 
chains up to 18 sites by applying a powerful numerical technique based on 
the iteration of the Lfi.nczos scheme. ~78) 

We measured along the line Pl = P2 = P the gap of the problem G -  
~ -~=  ln(21/]22]), corresPonding to the slowest relaxation mode. At a usual 
second-order phase transition the static problem has a diverging charac- 
teristic length ~ o ( K - K * )  -~ as function of some parameter K (here 
K =  p) and the fixed point K*, while the gap behaves as G,,~ G o ( K - K * )  ~, 



Cellular Automata and Statistical Mechanical Models 177 

(a) PO=O, Pl=O.5, ~2:1,  C0::0.5 
100 

80 

BO 

40 

2O 

0 5Q 1 O0 

TIME 

159 

Fig, 12. Monte Carlo simulations comparing near-critical behavior on different regions of 
the phase diagram, Biack dots are occupied sites; unoccupied sites are not shown, (a) Near the 
lsing point I {p~ = 1/2, p~ = 1), (b) Near tbe critical point CI (Pl ~P2 ~P,).  (e} Near the 
critical point C2 on the line h = O. The top picture shows the simultaneous updating, the bot- 
tom picture the sequential one after a fulI sweep. Note that the values of the critical points 
(except I) are different in the two models. 
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( b )  PO--O, P1=0.71, P2=0.71, c0=0.2 
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Fig. 12 (continued) 
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(c) PO=O, P1=0.79, P2=O, C0--0.55 

ii , , 
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PO=O, P1=0.8, P2=O, C0=0.4 
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TIME 

Fig. 12 (continued) 
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where A--zv, and z is the dynamic exponent. ~42~ From the point of view of 
finite lattice scaling and phenomenological renormalization (24,z5) this means 
that in the neighborhood of K*, G u ~ N -z. Denote for two finite systems of 
size N and N' 

N t  ~ , N,N' 

where b is the scale change and 

0G 

Here b is the scale change. The three parameters K*, v, and z can be 
calculated from sets of data involving systems of three finite sizes, N, N', 
and N" as follows: (a) calculate K* from Z N . N . ( K * ) = Z N , , N . ( K * ) ,  leading 
also to: ( b ) z = Z N ,  N, ; (c) finally, v ~=z+Z'  These dynamic scaling N,N'" 

relations are exactly the ones previously derived in the context of 
anisotropic scaling. (47) 

The beta function is defined as 

f l(K)- lim dK'b~l--~ = [~Kln(~ 1 1) 

(3 is the static correlation length). In finite lattice calculations fl can be 
approximated following Roomany and Wyld (24) as 

z N'N )kG-Ta-7,? (4.8) 

where now GN = GN(K), GN, = GN,(K'), etc. The dynamics inherits the kind 
of global symmetry (such as invariance when all spins at time t and t + 
are flipped) possessed by the statics. 

A plot of the quantity Z N ,  N+ 1 a s  a function o fp  = Pl = P2 is presented 
in Fig. 13. A detailed analysis of data is cumbersome because the approach 
to the true critical value is not monotonic. However, using different sets 
of data and an improved version of the Romberg algorithm for 
extrapolation, (79) we have found a dynamic critical exponent slightly lower 
than the Euclidean value (3~ z = 1.58(1), which is, however, within the error 
bars of our estimate. 
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1.9, 

1.8 

1.7 

~- 1.6 
N 

1.5 

1.4 

1.3 
0.69 

N:8 

0.70 0.71 0.72 0.73 0.74 

P = Pl = P2 

Fig. 13. Finite-size dynamic exponents ZN,  N+ [ for N =  8-17 from the exact diagonalization 
of the Liouville operator (4.6) for p~ = P2- Note that the critical probability has shifted from 
the p~ = 0.706 to p~ =0.725. 

We must recall that these results were obtained by assuming the usual 
second-order mechanism in which the inverse of the gap between the two 
leading eigenvalues plays the role of the single most diverging correlation 
length. This assumption might prove to be wrong on two accounts: one is 
the possibility of an "entropy'-driven transition [see possibility (b) in Sec- 
tion 2]. As obvious from Example 4, a strip geometry might be missleading 
in such a case. The second one is the relation between the spin-spin 
correlation length and the mean width of the percolating cluster. The 
characteristic sizes of the largest clusters near the transition must diverge 
with the same exponents as the correlation length if scaling is true. Recen- 
tly, counterexamples have been found for similar dynamic problems. (4~ An 
investigation along these lines is under way. 

5. CELLULAR A U T O M A T A  ENGINEERING 

Cellular automata are interesting in themselves as simple models dis- 
playing a complex behavior or as discrete realizations of continuous dif- 
ferential equations. In many ways, modeling with cellular automaton rules 
seems a natural thing to do in biology, ecology, and computer science. 
Such a phenomenologicaI approach may be very helpful in many cases by 
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explaining a general pattern of behavior in terms of some (hopefully) sim- 
ple and local dynamic rules. A taxonomic approach classifying all possible 
simple deterministic rules in (1 + 1) and (2 + 1) dimensions is also useful, 
providing a menu of possibilities for potential applications. An alternative 
approach is to find the rules corresponding to some observed (or expected) 
pattern without having to rely on a possibly lengthy trial-and-error search. 
The main goal of the present section is to show how to use the analogy 
between statistical mechanics and cellular automata to find dynamic rules 
whose effect can be predicted analytically in advance. It is hoped that the 
examples, and the methodology, shown below might be useful for practical 
purposes, as functioning hardware or as mathematical prototypes of dif- 
ferent biological models. 

Our examples are centered around four main areas: first we consider 
the question of phase transitions in cellular automata. By using the techni- 
ques explained in the section dealing with disorder-type solutions, we give 
two examples: first we construct a cellular automaton that corresponds to 
the T = 0  critical point of the antiferromagnetic triangular Ising model. 
This is a particularly interesting case, because the model is exactly soluble 
and the large-distance correlations are known to be isotropic. In the second 
example we construct a (2 + 1)-dimensional CA whose statics is given by 
the symmetric eight-vertex model: according to the exact solution, ~19) the 
static exponents should change continuously with temperature. 

The second main question under scrutinity is the question of conser- 
ved quantities. Examples of time development with constant energy and 
magnetization are given for ( l+l)-dimensional CA and their critical 
behavior is discussed. Celular automaton rules preserving the topological 
structure of an initial configuration are presented, together with some 
applications. 

The third and the fourth areas of interest, namely the question of a 
change in the limit cycle and the question of parallel cellular automaton 
networks, are closely related. In statistical mechanical systems one can con- 
struct short-range interaction models with an infinite number of (commen- 
surate) ground states either by some clever topological constraints or by 
combining together two parallelly running cellular automata. This leads to 
sets of rules that are either deterministically or randomly changed in space 
and/or time. Their properties, including purely dynamic transitions without 
scaling, the presence of Cantor sets like attractors, etc., are briefly reviewed 
through some simple examples and show the degree of complexity one can 
obtain by increasing the hierarchy of parallel automaton networks. 
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5.1. Construct ing CA wi th  D i f fe rent  Crit ical  Propert ies 

Example 7. The Ant i fe r romagnet ic  Tr iangular  Ising 
M o d e l .  In this example we consider a ( l+ l ) -d imens iona l  cellular 
automaton defined on a triangular lattice as shown in Fig. 14. The time- 
developing operator involves now two time steps. At T =  0 the ground state 
of the antiferromagnetic Ising model is fully frustrated. In every elementary 
triangle the spins try to avoid having alike neighbors. For  topological 
reasons, however, this is not possible: the best that can be achieved is to 
have two alike and one different spin in every elementary triangle. This 
restriction is easily implemented by using the following rules: 

(0~ t (~ 1 0 0 1 
w ~ = p o =  1, w j, = p i = l  

1 1 

() 0 0 1 
w = p 2 = p ,  w ,~ = p 3 = 0  

1 1 (0) 
1 1 1 

w = p 4 = l ,  w ~, = p h = l - p  

1 1 

(5.1) 

() (1) 
1 0 1 1 

w ~, = p 6 = 0 ,  w j, = p 7 = 0  

1 1 

These rules are dictated by the full frustration condition, except for the 
rules P2 = P and P5 = 1 - p. Once wese t  the two first rows of spins to some 
initial values, the dynamic rules can be used to obtain a given ground-state 
configuration of the antiferromagnetic triangular Ising model. Such a con- 
figuration is shown in Fig. 15a for an initial random configuration of the 
two rows with initial concentration of Co = 0.5 and for p = 0.382. Starting 
with a different initial configuration and/or  using different random num- 
bers to decide the ties (P2 and Ph), one obtains different possible ground 
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Fig. 14. The construction of the triangular lattice. The transfer matrix involves two time 
steps. An elementary square face w(solsl, s3, s2) containing two triangles is also shown. 

states of the Ising model. The magnetization per spin is also displayed on 
Fig. 15b as a function of time: its average value is 0, as it should, but strong 
fluctuations around this value are present due to the critical character of 
the model. Until now we have taken for granted that the rather obvious 
rules (5.1) are really describing the ground states of the triangular 
antiferromagnetic Ising model. In order to prove that this is indeed the case, 
one has to show that: (a ) the  dynamics given by (5.1) can reach any 
possible ground state (ergodicity) and (b)all  such ground states have an 
equal probability to appear. A direct proof of these two points  is rather 
difficult, we use the following trick to resolve the problem. 

Consider the elementary square face shown in Fig. 14b. The question 
posed before can be rephrased as follows: Is it possible to define the 
couplings in the interaction form of the face weight w such as to lead to the 
weights (5.1) and at the same time to correspond to the triangular Ising 
model? In order to answer this question, let us introduce the notation 
shown in Fig. 14b and denote by c~ the couplings between the spins So and 
sl, s2, and by K3 the coupling between the spins So and s3. In order to 
satisfy the CA condition, let us first sum ff~(SolSl, s2, s3) over So: 

exp{so[C~(sl + s2) + K3s3] ) = exp[A + Bs3(s 1 3 I- $2) + C S 1 S 2 ]  (5.2) 
so 
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( b )  

Fig. 15. (a) Monte Carlo simulation for 150 time steps of the CA given by the rules (5.1) for 
an automaton of size N =  50 with periodic boundary conditions, p =0.381966..., co =0.5. An 
occupied site is represented by a black square; the empty sites are not shown. (b)The  
coverage/site as a function of time for the same configuration. 
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where 

A = �88 In 24 cosh(K3 + 2c~) cosh(K 3 - 2e) cosh2(2K3) 

B = �88 In [cosh(K3 + 2c0/cosh(K 3 - 2e)] (5.3) 

C = �88 lnEcosh(K3 + 2e) cosh(K3 - 2c0/cosh2(2K3)] 

Therefore by construction 

W(So J s l, s2, s3 ) = exp { - A - Bs3 (sl + s2 ) - Cs 1 s2 + So [ ~ (sl  + s2) + K3 s3 ] } 

(5.4) 

will satisfy the CA condition (2.11). When considering the lattice obtained 
by gluing together all faces w, one easily see that the total coupling between 
spins So, s1,2 is given by KI = K2 = ~ - B .  Note that a coupling C between 
the spins s~ and s2 is produced; it is the effect of this coupling that must be 
studied in detail. Consider the limit K 3 = - ] K 3 [  ~ 0% and suppose that 
~ =  -/3 IK31 +~. Calculating the value of B from (5.3) and asking that 
K1 = K 2 = K3, one obtains that /?  = 1/2 and 

exp(4~) = ( , , ~ -  1)/2 

Using the values of ~ and/~, one can recalculate the values of the couplings 
using Eqs. (5.3). A remarkable result is that 

C = �88 In 1(3 + x f5) = 0.2406059... 

e21K31 

~ CA model 

Fig. 16. The phase diagram of the triangular antiferromagnetic Ising model with next-nearest 
neighbor interactions and an external field. (8~ Here exp(2 I/s corresponds to the tem- 
perature operator, C is proportional to the SOS model parameter TR, H is the external field. 
Shaded regions are massless (critical) phases with continuously changing parameters. The 
parameter values corresponding to the CA rules (5.1) are indicated by an arrow. 
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is of order O(1), and is not proportional to [K3]. In leading order for 
K 3 ~ --o0, C seems to play no role whatsoever. A little further algebra 
shows that the parameter p in (5.1) is equal to 

p = 2/(3 + x/-5) = 0.381966... 

the value used in the Monte Carlo simulation shown in Fig. 15. 
The number of ground states of the isotropic antiferromagnetic 

triangular model is macroscopic. Therefore, even some O(1) couplings like 
C may have an important effect in selecting a subset of configurations 
among the allowed ones. In the Boltzmann weight w, C enters always with 
a negative sign. For a moment suppose the opposite, so there is an attrac- 
tion between (six) next nearest neighbours. This signals a preference for 
such a sixfoldcrystalline structure: - C > 0  acts as an external field with 
sixfold symmetry. In a recent work it has been shown (a~ that the triangular 
antiferromagnetic Ising model, including next-nearest neighbor couplings 
and also an external field, can be mapped into a solid-on-solid (SOS) 
model. As a result, it was possible to identify the spin-wave and vortex 
operators corresponding to C and to an external field. The resulting phase 
diagram (8~ is shown in Fig. 16. The shaded regions correspond to massless 
(critical) phases with continuously changing exponents. TR is the roughen- 
ing temperature of the SOS model and is supposed to be proportional to 
C; at C = 0, TR = 18. Although no exact relation is known between TR and 
C, it can be argued that at large distances the spin-spin correlations decay 
a s  (8o) 

{sisj) , AC(i, j)  rij 2x6 + Br~2X2 (5.5) 
r~y ~ o O  

where A and B are constants, r U is the distance between two sites i, j of the 
triangular lattice, and C(i, j)  is a modulating factor, which equals 1 if i and 
j are on the same sublattice (the triangular lattice has three sublattices) and 
- 1 / 2  otherwise, Xp is the anomalous dimension of a spin-wave operator 
with charge p,(8o) 

Xp = rR/2p: (5.6) 

For C = 0 one recovers the known result (53) 2)(6 = 1/2 and 2X2 = 9/2. Since 
in the CA model C > 0, this implies that T e > 18 and thus from (5.6) larger 
exponents Xp (faster decay). 

When the value o fp  is changed in the dynamics rules (5.1), three O(1) 
parameters are varied along a special trajectory. If K g = - I K 3 t + A i ,  
i =  1, 2, the three operators in question are AI, A2, and C. The anisotropies 
A 1.2 correspond to irrelevant operators (they do not induce a transition) up 
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to the value e 2 J ~ -  e 2 ~ 2 =  l ,  where a incommensurate-commensurate trans- 
ition happens. (s~ In the C > 0 direction there is no transition, only TR > 18 
increases. A small external field can be easily added by breaking slightly the 
symmetry Ps = 1 - P 2  in (5.1). The temperature operator ' ~ e  21K31 has the 
critical index X r =  18/T R and it is related to relaxing the deterministic part 
of the rules (5.1). 

There are many interesting features of this automaton: it is an example 
of a simultaneous dynamics at criticality; the model is "almost" soluble (8~ 
with spin-spin correlations decaying isotropically at large distances. This 
isotropic behavior is highly unusual for cellular automaton models and 
leads to the value z = 1 for the dynamic exponent. Moreover, this example 
shows that a very fast, simultaneous simulation of such a nontrivial model 
is possible, gaining one full dimension over the usual Monte Carlo method. 
It is also encouraging that this model is rotational invariant at large distan- 
ces; similar models would be of high interest for the simulation of lattice 
gauge theories. 17 However, this would require an exhaustive search for 
multicritical points in such models, similar to the one done for the IRF 
model./6~ That study was the basis for the present calculation: we are now 
moving on the critical surface predicted by the first two articles of Ref. 60. 

Example 8. A (2+1 ) -D imens iona l  CA with a Continuous 
Change of Exponents. In this example we answer the question ~8 of 
whether is it possible to construct a (2 + 1) CA whose stationary dis- 
tribution (or static behavior) is described by the symmetric eight-vertex 
model. (19) According to Section 3.1, one has then to construct a set of time- 
symmetric automaton rules whose static (L1 I R I )  partition function is 
identical to the one of the symmetric eight-vertex model in spin represen- 
tation (an IRF model with diagonal and four-spin interactions). The main 
difficulty of such a construction is related to the four-spin coupling: it is 
not possible to break the square lattice into two sublattices that could be 
then updated alternately. As pointed out to me by D. Dhar after this work 
was completed, it is, however, possible to define four sublattices forming 
squares of twice the side of original lattice: in this way the spins of a given 
sublattice (generation) are not nearest or next-nearest neighbors to each 
other. His method implies a three-step time recursion, but is simple and 
applies to all IRF models. In what follows we present an alternative 
method, involving a two-step time recursion only, but requiring the full 
integrability of the static problem. 

17 An example of a Z 2 gauge-invariant (3 + 1)-dimensional cellular automaton was given by 
RujSn and Patk6s, (8~) which, however, breaks the time-space symmetry at the transition 
point. 

a8 H. Hartman asked me this question during the Statphys' 16 meeting in Boston. 
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Consider a slice of the 3-dimensional sc lattice with all possible 
interactions within the elementary cubes (IRC model) as shown in Fig. 17a. 
We assume that by summing up all the spins indicated by a bullet and 
shown for one single cube in Fig. 17b, only a constant is generated [see 
Eq. (2.11)] independently of the values of the spins numbered by 5, 6, 7, 8. 
Considering an IRC model with even interactions symmetric under the ~/2 
rotations around the s~s8 axis, one generates only three different even 
couplings between the spins s5 ..... ss, which reduce the number of indepen- 
dent IRC couplings by three. The "Ansatz" couplings K, L on the three 
lower sides of the cube represent the interactions within <LI[ and are 
shown in "planar" form in Fig. 18b. Fortunately, the eight-vertex model 
satisfies the generalized star-triangle transformation and consequently 
obeys Eq. (3.15) (see Fig. 10) also for w = w '=  w". Applying this transfor- 
mation several times, one can transform the lattice shown in Fig. 18a into 
the one shown in Fig. 18b, where apart from the "defect line" shown by the 
heavy lines, the structure is the one corresponding to the planar eight- 
vertex model. Its solution is exactly known. ~ I suspect that the effect of 

Q) 

b) 

S8 

S2 $ 7 ~  s5 

$I 

$1 , S4 
sl L~s4 

$3 S7~/S8 S5 

Sl- - S4 

Fig. 17. (a) The diagonal-to-diagonal transfer matrix of a simple cubic IRC model in the 
(1, 1, 1) direction. (b) Notations used for a single cube: the spins sl-4 are summed up. Note 
that the faces of the cube must have interactions corresponding to the underlying symmetric 
eight-vertex model: diagonal interactions (K) and four spin interactions (L), as indicated on 
the planar representation of the cube. 
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a) b) 

Fig. 18. (a) The (LIIR~) corresponding to an eight-vertex model defined on the (1, 1, 1) 
face of the cubic lattice, which can be transformed using the star-triangle transformation 
(3.15) into (b) an eight-vertex model on a square lattice with a "defect line" (heavy line). 

this defect line is irrelevant in the thermodynamic limit, especially since it 
can be shifted far away from the region of interest. 

I do not present here a detailed definition of the dynamic rules; the 
construction follows the same scheme as for the previous example, with the 
added inconvenience of many more parameters. As far as I know, there are 
no dynamic studies near the critical line of the symmetric eight-vertex 
model, where the exponents change continuously as a function of tem- 
perature: the present example might be used to devise a fast, simultaneous 
algorithm for such a simulation. 

5.2. Conservation Laws and Topology-lnvariant Dynamics 

The following examples illustrate how one may devise rules conserving 
different macroscopic quantities. In an elegant paper Jen (82) considered 
recently the problem of finding deterministic CA rules leaving given one- 
dimensional strings invariant. She was also able to give the minimal spatial 
extension of rules whose only invariants were the given string and words 
formed from it. Here we emphasize mainly probabilistic rules leaving a 
given macroscopic quantity invariant, since such quantities are not affected 
by local random noise. As a first example, we consider a (1 + 1)-dimen- 
sional au tomaton  that preserves the total magnetization of a one-dimen- 
sional string. The second example shows the same thing for an energy- 
conserving dynamics, while the third example introduces a local CA that 
"knows topology," in the sense that it preserves the topological structure of 
an initial configuration and, moreover,  it is able to recognize some of its 
aspects. 
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Example 9. A Cellular Automaton Conserving Magneti- 
zation. Consider a checkerboard lattice (see Fig. 2a) in two dimensions 
and define the following rules for the transition probabilities of the dashed 
squares: 

t001 (00)(10) 
w= $ = P o , o = l ,  Wll I $ = P l , l = O ,  Wll I ,~ 

0 0 1 1 0 1 
= P2 ,2 = p  

(5.7) 

These rules, the normalization condition, and the symmetries 

w i (n l ,  nz]n3, n4)= w, , (n2 ,  n l l n 4 ,  n3)=wl (n3 ,  n 4 t n l ,  n2) 

= w i ( 1 - n l ,  l - n 2 1  l - n 3 ,  l - n 4 )  (5.8) 

define completely all the 16 weights, which can be alternately given in the 
following compact form: 

w . . ( s l ,  s2 Is3, s4) = ~-[2 + (1 - p ) ( s l s3  + $2s4) -/- p(SIS  4 q- $2S3) ] (5.9) 

where s i= 1 if a site is occupied and - 1  if a site is empty. The 
magnetization is conserved by construction: all transitions changing the 
number of occupied sites are forbidden. The free parameter p is related to 
the ability of the "walls formed in the time direction by the occupied sites 
to diffuse to the right or to the left. Note that this model can be mapped in 
the usual way (83/into a staggered six-vertex model (or into a nonstaggered 
"diagonal-to-diagonal" six-vertex model). 

In Fig. 19 we show a few simulations according to the rules (5.8). 
From (5.8) it is obvious that the rules are symmetric in the time direction; 
hence, according to Section 3.1, the statics of this model can be easily 
determined. Consider, for example, the spacelike correlation functions 

Z~si} sil ,..., si~ b ( Z j  sj - m N )  
(si l  ..... s i k ) , ~  ~ = = m k (5.10) 

Z{, i}  6 ( Z j s ~ - m N )  

which reproduce the typical behavior of noninteracting spins in a field. 
However, since the rules are partially deterministic (completely deter- 
ministic if p = 0 or 1), some properties of the initial state (such as different 
correlations between sites) are carried on and are not "forgotten" during 
the dynamic simulation. The result (5.10) and the results below apply for a 
random initial distribution of the occupied sites. The disorder solution 
(5.10) tells us that the "stationary" distribution is that of noninteracting 

822/49/1-2-13 
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Fig. 19. Cellular automaton dynamics conserving magnetization: Monte Carlo simulations 
for different parameter values N =  80, p ~ diffusitivity and 0 = coverage: (a) p =0.3, 0 =0.25, 
(b) p =0.8, 0=0.25. 
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spins. Equa t ion  (5.10) can be bet ter  unders tood  by the following simple 
argument :  

~" + 1 with probabi l i ty  n 2 + n2  ~ (n + - n_ )2 = m 2 
( sisj ) = (  _ l  with probability 2n + n j =  

where n +, is the concent ra t ion  of occupied (empty)  sites. The  calculat ion 
of correlat ions in the t ime direction is also simple. Consider  first the trivial 
case p = 0 (frozen walls). Then  it is obvious  that  si(t)= si(t + ~), so every 
corre la t ion between spins at different times reduces to the ones a l ready 
given by (5.10). The other  determinist ic  case, p = 1, is only slightly more  
involved. Here  the occupied sites always move  to the right (left) if they 
occupy even (odd)  lattices (see Fig. 18c) due to the s taggered structure of 
the lattice (Fig. 2a). Therefore,  correlat ions of  spins lying in the 
"light cone" v =  •  will cross only half  of the occupied sites, so, for 
example,  (si(t) si+_vr(t+ T ) ) =  (m/2) 2, etc. The  other  correlat ions again 
will have the form (5.10). Fo r  0 < p < 1 we expect the same result to hold, 
but with v = p. 

Example  10. E n e r g y - C o n s e r v i n g  Dynamics .  Consider a 
(1 + 1)-dimensional  lattice with the e lementary  faces 'shown in Fig. 20. For  
every dashed face the t ransi t ion probabi l i t ies  are given as follows: 

w(11000) = 0 ;  w(1100l)  = p; w(11010)=  1; w ( l l 0 1 1 ) =  1 - p  

(5.11a) 
and 

w(nlln2, n3,n4)=w(1--nl{1--n2,  1--/ /3,  1 --n4);  ni=O, 1 

1 2 3 4 5 6 7 2 4 6 
X\ /X\ /X\ /X 

a) b) 
Fig. 20. (a) The (1 + 1)-dimensional lattice of a cellular automaton conserving energy. A full 
row of spins is set in two steps, as indicated by the shaded triangles. (b) The doubling of the 
lattice sites: first, the straight lines of the original lattice are bent into a zigzag form, then a 
second sublattice (denoted by crosses) is added, with the same rules. Note that the w triangles 
of (a) now have a diamond shape involving two time steps. 
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If instead of the n =0 ,  1 variables we use a = - 1 ,  + 1 variables, the face 
weight w has the simple form 

w(crolCrl,a2, a3)=�89 (5.11b) 

This rules conserve the energy (~i  aiai+ 1) of a row because the number of 
negative bonds (the number of times the spins change sign) is left invariant 
by construction in (5.11). Using the same trick as for oriented percolation 
(Section 4), it is again possible to double the lattice size in such a way as to 
have a simultaneous updating of two interpenetrating, but independent, 
sublattices. They are shown in Fig. 20b and for p = 1 correspond to the 
(1 + 1)-dimensional case of the Q2R rules./14-17) Let us now introduce the 
link (or dual) spins as si+l/2=a~a~+~ and let us call the negative bond 
variables kinks. If one follows the dynamic induced by (5.11) for the kinks, 
one easily recognize the rules as (5.7). Therefore, we have here an example 
of what we called a static duality transformation in Section 3.3. All results 
obtained in the previous example can be translated for the present case by 
performing an inverse transformation from the bond variables. 

This analogy is illustrated graphically in Fig. 21. In Figs. 21a and 21b 
we show two simulations performed with the same values of the parameters 

Fig. 21. Numerical simulation for an energy-conserving automaton of size N - 8 0 .  
(a) p=0 .3 ,  (b) p=0 .8 ;  in both cases the density of negative bonds (kinks) c0=0.25, 
(c) same simulation as in (b), but only the evolution of kinks is shown. 
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as in Figs. 19a and 19b, except that the coverage 0 represents the density of 
kinks. To make the analogy more visible, we have replotted Fig. 21b by 
showing only the kinks: it leads to a picture similar to Fig. 19b, the 
difference being caused by the fact that one uses the (same) set of random 
numbers in a different way (for p =  1, for example, the two figures are 
identical). 

At this point it seems worthwhile to discuss what happens in higher 
dimensions, especially because the topology of the one-dimensional lattice 
is trivial. Consider a (spacial) d-dimensional Ising model and define a 
"loose" spin to be a spin whose internal field is exactly zero. Therefore, 
flipping this spin does not change the total energy of the system. The 
celebrated Q2R (or flip if two from the nearest four = quatre--neighbors 
are up) rule/14 17) corresponds exactly to the prescription to flip all possible 
loose spins of the system. The problem here is that on the constant-energy 
surface there are also configurations without any loose spins, so the Q2R 
rule cannot be ergodic. Consider, for example, the elementary low-tem- 
perature excitations consisting of small domains of spins pointing upward 
immersed in a large, compact domain of spins pointing downward: some 
examples are shown in Fig. 22a. In general, one finds that loose spins can 
be found at the corners or along walls oriented on the (1, 1) direction of 
compact clusters. 

If one is really interested in a microcanonical simulation of the Ising 
model, (841 one also has to consider dynamic processes that would move 
around a single flipped spin. Define a "loose cluster" of spins as a cluster 

0 0 0  0 0 0 0  
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Fig. 22. (a) Some typical low-temperature configurations without loose spins (1) or with 
localized loose spins (2, 3). (O)  Up spins, ( � 9  down spins, loose spins (clusters) are framed. 
(b) Some examples of "loose" clusters; the two-spin cluster (1) moves the elementary low- 
temperature excitation one step to the left. 
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whose total external field vanishes--flipping such a cluster does not change 
the energy. In principle all such clusters must be flipped. From a practical 
point of view, however, one may try to keep as dynamical rules only 
flipping the single-spin and two-spin loose clusters. A two-spin loose cluster 
is shown in Fig. 22b; when flipping the internal two spins, the overturned 
spin moves one step to the left. In order to show that by including also flips 
of loose 2-clusters the dynamics becomes ergodic, one would have to prove 
that flipping an arbitrarily large loose cluster can be done by successive 
elementary flips, or to prove that the measure of loose clusters without this 
property is zero in the thermodynamic limit. Although we have not sought 
such a proof, similar numerical procedures applied to the staggered six- 
vertex model ~85) suggest that such an extended dynamics leads to the 
expected results. 

The rules (5.11a) have another interesting feature: they preserve the 
topology of any initial configuration in the sense that the number of clusters 
is conserved by the dynamics. One can try to generalize such constraints to 
higher dimensions. A lattice quantum mechanical model leaving invariant 
the topology ("topodynamics") has been proposed by Aharonov and 
Schwartz (86) and has been recently generalized to a stochastic dynamics. (87/ 
We present briefly here the main idea and some applications in two 
(spatial) dimensions. 

Example 11. A Cellular Au tomaton  That  Leaves the 
Topological  St ructure  Invariant.  Consider a square lattice and 
define a lattice-gas variable in every elementary square. A square can be 
occupied (black) or unoccupied (white). Two such squares (sites) are said 
to be connected only if they have a common edge. A cluster is a set of con- 
nected sites (including the single site); a loop is defined as usual as being a 
set of empty sites encircled by a cluster of occupied sites (see Fig. 23a). In 
Fig. 24a we show a 60 • 60 lattice where the sites have been occupied at 
random with the probability Co=0.55, close to the site-percolation 
thereshold p~.~'e'sq=0.592. (88) It iS obvious that we have many clusters, 
loops, double loops (eights), perhaps loops within loops, etc. We ask the 
following question: is it possible to design a local CA rule that (a) leaves 
invariant the topological structure of such a configuration and (b) is able 
to recognize clusters, loops, and possibly their hierarchy. We mention here 
that it was the inability of Perceptrons (linear, one-step CA) to perform 
such a task ~89) that hampered the extensive research efforts in that field. 

Consider a site and its nearest and next-nearest neighbors (Fig. 23b). 
The central square (spin) is set at time t + 1 as a function of its own value 
and of its environment defined above at time t. The rules are such that no 
connection is made and no connection is broken within the (3 x 3) window 
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m 

o) b) 
Fig. 23. (a) Clusters and loops on the square lattice. The squares indicated by 1 and 2 are 
connected, 1 and 3 not. The canonical form of a cluster (4) and that of a loop (5) are also 
shown. (b)The elementary window of the CA rules and three different possibilities: (1) the 
center spin must remain 0 in order to not connect two clusters; (3) the center spin must 
remain 1 in order to not disconnect a cluster; (4) the center spin can be taken away (1 ~ 0) 
from an existing cluster without changing the topological structure; (2) a cluster is identified; 
(5) a loop is identified. 

(Fig. 23c). Still, we are left with m a n y  rules that  basically may add or take 
away with some probabil i ty a site to (from) a cluster. This probabil i ty p 
plays here the role of the chemical activity (external field). If p = 1 (0), one 
has a deterministic rule we call the "take" ("add")  rule. By taking away 
such irrelevant sites with large probabil i ty (actually, p = 1 = "take" rule), 
one obtains the picture shown in Fig. 24b, since the system tries to 
minimize its energy and the field prefers the white sites. It  is evident that  
now all loopIess clusters have reached their "canonical"  f o r m - - a  single 
occupied site. Once this stage is reached, the dynamics  is s topped and the 
number  of clusters is counted using the local 3 x 3 window. The loops also 
tend to have the "canonical"  form consisting of  one empty site encircled by 
a full cluster. However,  a loop whose "membrane"  is already minimal (one 
layer of  occupied sites) cannot  be reduced any longer, even if the 
"ground  state" of  the system would prefer loops of minimal size. In some 
sense, the si tuation is similar, but  not  equivalent, to the one encountered in 
spin glasses. The dynamics  has many  fixed points corresponding to 
metastable states separated by large energy barriers. If  one also wants to 
count  the numbers  of loops, the clusters are set to empty and the rules are 
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reversed: now we add sites whenever possible. The interior of the loops is 
then reduced to an elementary square, again recognizable within the (3 x 3) 
window. When no more sites can be added, the dynamics stops (Fig. 24c); 
again the loops are counted and filled up. The process is inverted again 
(Fig. 24d), until nothing is left. With this algorithm one can count the 
number of clusters, the number of loops, the number of clusters within 
loops, the number of loops within loops, etc. 

The pictures shown in Fig. 24 were obtained using a sequential 
updating. One can convince oneself that a simultaneous updating 
procedure is possible after splitting the square lattice into nine sublattices, 
such that the (3 x 3) windows do not interpenetrate-- that  could result in 
an unwanted cancellation of clusters consisting of two sites. This also 
means that a specially designed chip could make these operations in a 
number of steps that does not depend on the size of the lattice but only on 
the topological complexity of the presented pattern. The CA rules have 
many potential applications in a wide range of areas, including statistical 
physics, some of which were presented recently. (87) 

5.3. Cel lu lar  A u t o m a t a  w i t h  M a n y  Limit  Cycles: Cel lu lar  
A u t o m a t a  N e t w o r k s  

Here we address the following question: is it possible to devise 
dynamic rules such that the automaton will display a very large (possible 
infinitely large) number of limit cycles? Is it possible to change the 
behavior from one limit cycle to another limit cycle by changing one 
(or a few) parameters? 

We have seen that limit cycles in (finite) cellular automata correspond 
to commensurate phases in statistical physics. Let us consider first the 
problem of having a large (possibly infinite) number of commensurate 
phases in a statistical mechanical model. The real problem is, of course, to 
find a subclass of such models that satisfy also the CA condition (2.11). 
Among the most striking discoveries made in the last few years was the fact 
that many lattice systems with competing interactions actually display a 
very complex, highly nonanalytic phase diagram. One of the first models of 
this type was the axial-next-nearest-neighbor-Ising (ANNNI)  model in 
three dimensions. 19 Other representative models are a one-dimensional 
antiferromagnetic lattice-gas model with long-range interactions (91) or the 
one-dimensional random energy Ising model in a field. (92) In order to have 
an infinite number of phases we need either quite high dimensionality, so 

19 Rather than try to list all the relevant work, we only cite the recent paper by Luck and 
Petritis3 m2) 
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Fig. 24. (a) All sites of 60 x 60 square lattice are set to 1 with the probability p = 0.55 < 
p~=0.592 (site percolation). (b)After  T = 8  sweeps the "take" dynamics has reduced all 
loopless clusters to canonical form. The clusters are counted (there are 120 clusters) and set to 
zero before the rules are inverted to "add." (c) The "add" dynamic stops again when one can- 
not add any further spin without breaking the topological structures. The picture is a negative 
one (white and black are inverted). Note again that the isolated black squares are the centers 
of the loops. The loops are counted (there are 36 loops) and filled up. (d) After inverting again 
the rules, six clusters are left. 
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that the mean field approach is qualitatively correct (the ANNNI model 
exhibits infinitely many phases only in three or higher dimensions), long- 
range interactions, or quenched randomness. In the next example we show 
how to construct the dynamics of a model, which due to some topological 
effects occurring in non-Bravais lattices has an infinite number of T = 0  
(simple) ground states. Note that the dynamics does not have to show 
long cycles--we are dealing here only with many commensurate phases 
occurring in the stationary (equilibrium) state. 

Example 12. A (2+1) -D imensiona l  Cellular Automaton 
with Infinitely Many Phases. In a recent paper Kanamori  (931 has 
shown that a lattice-gas model defined on a honeycomb lattice and 
including nearest, next-to-nearest, and third-neighbor interactions shows 
an infinity of ground states for some specified region of the parameters. We 
consider here a simplified version of his model, which we will treat follow- 
ing the general approach proposed by Villain. (94) Consider a honeycomb 
lattice with lattice-gas variables {ni= 0, 1 }. The nearest neighbor interac- 
tions are infinitely repulsive, so that two occupied sites cannot be nearest 
neighbors (nearest-neighbor-exclusion = nne). In addition, the interactions 
per elementary hexagon contain an attractive interaction between third 
neighbors (J3) and an external field H (the activity is z = e H/kr) acting on 
occupied sites. Let us consider the low-temperature region of the phase 
diagram. If the field is very large compared to J3, then every second site 
(one sublattice) of the honeycomb lattice will be occupied, so as to 
minimize the energy of the nne lattice gas. If, however, J3 increases in 
value, the system will form the kind of walls shown in Fig. 25. Following 
Villain, (941 we calculate the energy/occupied site for triangles of length L as 
follows: 

E 

number of sites 

2 E = - ~  + L(L -- 1~) (J3 - H) - g 3H (5.12) 

Here L(L - 1 )/2 is the number of occupied sites in a triangle of side L, and 
3 ( L -  1) is the perimeter. Every edge is common to two and every corner 
to six triangles. The gain in energy when forming a wall of unit length is 
proportional to J3 for every hexagon (see Fig. 25), from which one must 
extract a lost field unit H, while at the vertex one loses 3H compared to the 
energy of a configuration without walls e~ = e(L = oo) (note again that the 
field and the attractive third-neighbor iteraction act only on occupied 
sites). Since the presence of vertices is unfavorable, one may suspect a 
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Fig. 25. A typical ground state of alternating "triangles" of occupied sublattice 1 and 2. The 
length of the triangles is L = 5; the occupied sites are denoted by dots. The walls separating 
the different sublattices are indicated by the continuous lines and form a regular triangular 
lattice. 

striped structure with no wall crossings to have a lower energy. A closer 
look at this layered structure, however,  shows that  for topological  reasons 
the energy/unit  length of parallel walls is p ropor t iona l  to 3 H - J 3 ,  implying 
that  in the region of interest ( H ~  J3) the stripped structure cannot  occur. 

Minimizing the (5.12) expression for e in L, one obtains that  L 
changes cont inuously  with the parameter  p = J3/H: 

2 L -  1 
p = 1 -~ ( L -  1) 2 (5.13) 

Since L can change only in integer units, the critical value for a change 
from a commensura te  phase characterized by L to one characterized by 
L + I  is 

p c ( L , L + l ) = l + 2 / ( L - 1 ) ,  L > 2  (5.14) 

N o w  that we have the statistical physical model  with the desired 
property,  we turn to the implementat ion of dynamic  CA rules that  will 
have as underlying statics the above-ment ioned  model. Consider  the two 
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sublattices of the honeycomb lattice and suppose that we move one of these 
sublattices upward in the time direction (see Fig. 26a). It is clear that the 
resulting three-dimensional lattice will be a close-packed lattice (57/and that 
when setting the dynamic rules every spin no will be a function of the spins 
on the previous time slice only (Fig. 26b): 

w(no[nl, n2, n3;n4, ns, n6) 

= ~,,0~.~ +.2+.3~/~-o~n4+.5+.6~znO/(c~ +.~+~V~.4+~5+.6Z + 1) (5.15) 
~ 0  

where fi = e J3/kT and z = e H/kr. 
These rules should reproduce the ground-state structures discussed 

above; they represent an example of a (2 + 1)-dimensional CA that changes 
its equilibrium structure. Since the transition between commensurate 
phases is usually of first order, one may expect the usual interesting 
dynamical phenomena (especially when e = 0 )  related to long-lived 
metastable states, creation of domain walls, etc. It seems thus useful to 
apply in the context of this problem the method of simulated 
annealing (95) heating the system (c~>0) and then cooling it slowly 
(c~ ~ 0). 

From the point of view of cellular automaton theory it would be very 
nice if one could devise (1 + 1)-dimensional rules that would construct the 
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Fig. 26. (a) The updating of the honeycomb lattice happens by alternating in time the sub- 
lattices of the honeycomb lattices. An upper view of the resulting lattice is shown: points 
deoted by crosses, solid circles, and squares form vertically stacked triangular lattices denoted 
by A, B, and C, respectively. The above considerations apply for any three-dimensional close- 
packed lattice consisting of vertical sequences A, B, A, B, C,..., the only restriction being that 
identical triangular lattices cannot be nearest neighbors in the time direction. (b) The dynamic 
rules: the spin n o is set according to the rules (5.15), depending on the values of its one-time- 
step predecessors, denoted by n~, n2, n 3 = nearest neighbors and n4, ns, n 6 = third neighbors. 
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kind of ground-state structure shown in Fig. 25. Such rules are possible, 
but somewhat artificial--one has to put by hand the horizontal walls by 
changing the rules every 2L time steps. 

However, we think that this simple extension of the hcp model is very 
interesting and it might be of interest in relation to experiments with 
materials intercalated in graphite. (96) Equation (5.15) provides a very fast 
algorithm for the numerical study of the static and dynamic properties of 
this model. 

Example 13. A ( 0 + 1 ) - D i m e n s i o n a l  Cel lular A u t o m a t o n  
with Many Limit Cycles. There is, however, a straightforward way of 
constructing cellular automata with different limit cycles. Let us generalize 
the dichotomic variables ni or si to some Q-state variables, l i= 1, 2 ..... Q, 
where Q = q l q 2 x  " xq~. Construct a transfer matrix which is a ql xq l  
cyclic (but not symmetric) hypermatrix. Every block of the hypermatrix 
consists again of q2 x q2 cyclic hyperblocks, etc. Such a model is an obvious 
generalization of the chiral clock model. (97) The hypercyclic structure 
involves that the transfer matrix is doubly stochastic and (apart from a 
trivial norm factor) already describes the dynamics of this general ZQ 
model. By changing the values of different couplings (or elements of the 
matrix), many limit cycles are obtainable. 

Another possibility of creating models with different cycles is to use 
the decoration method, as, for example, in the case of the "mock"-ANNNI 
models. ~ Starting with a checkerboard lattice as shown in Fig. 2 contain- 
ing only one- and two-spin interactions, decorate every vertical bond with 
a string of n spins. The interactions along the string are such that by sum- 
ming up all spins except the two end spins one recovers the original 
couplings. The dynamics for such a problem can be defined in many ways, 
either as setting at the same time the whole decorated spin string, or only 
the last two spins--the CA condition is recovered after summing up first 
the decorating spins. Such a model can exhibit (98~ a large number of com- 
mensurate phases (now in the time direction!), corresponding to different 
limit cycles. We shall not go into details, because such models are rather 
artificial; we prefer to move toward more interesting models, where the 
presence of many limit cycles is due to deterministic or random changes in 
the rules in time and/or space. 

Example 14. Hierarchic Linear Models.  In this example we 
try to generalize the notion (and the solution) of linear models treated in 
Section 3.3 to inhomogeneous automata, that is, to automata whose rules 
change in space, but, once fixed, remain the same in time. At the same time, 
we present a new type of solution for the (1 + 1)-dimensional case, strongly 
related to the theory of fully developed chaos. For the sake of simplicity, 
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consider a linear model corresponding to the Glauber choice of transition 
probabilities (46): 

, , 1 [  ~s,(s~ +si+ )]; 7 t a n h 2 K  w(s, lS,_l,S,+l)=-~ t + ~  -1 1 = (5.16) 

where K is the coupling of the one-dimensional Ising model. The order 
parameter of this model is the magnetization. According to Eq. (3.5), in the 
magnetization sector one has to diagonalize the matrix [-see Eq. (3.5)] 

2(2/7)(si); .  = (si_ 1 >;. + (si+l >;. (5.17) 

where we have used the time generating function 

<s,>~ = E ; / < s , > ,  
t 

and (see Section 2) the relaxation time is given by r =  - l / I n  2. The usual 
renormalization group approach is to make a decimation both in space and 
time. A decimation in space leads to the new coupling constant given by 

v' = v2; v = tanh K (5.18) 

which has a stable fixed point at v = 0 and an unstable one at v = 1. A 
decimation in time corresponds to eliminating every second unknown in 
Eq. (5.17), leading to 

2 -  2 - ( s i > ; .  = <s i 2 > 2 - ~  <s i+2> ,~  ~ 7 
(5.19) 

In the renormalization group interpretation one has first to express ?) in 
Eq. (5.19) in terms of 7' corresponding to v' of Eq. (5.18) and only then to 
identify the new frequency 2'. This method allows for the study of the dis- 
tribution of relaxation times only near the fixed points, since during the 
iterations v moves toward its fixed-point value. We know, however, that 
the problem is exactly soluble for any 7- The alternative approach is to 
"renormalize" only the dynamics, but not the statics. (99) After decimating 
the infinite set of dynamic equations (5.17), one obtains the same set of 
equations (7 is now unchanged), but with a different 2, given by (5.19). If 
originally 2 was a proper eigenvalue, it must be so after decimation. 
Introducing 05 = 2(,~v/7), we obtain the mapping induced by the decimation 
procedure as 

(y~, = ( j~2 __  1 or co' = 4c0(1 --co); co = 2--  405 (5.20) 
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leading to the well-known quadratic map for fully developed chaos, (99) 
whose stationary probability distribution satisfies 

P(co) = f dco' P(co') 6 [co - 4~'(1 - co')] (5.21) 

and is well known.  (99) This way one recovers, with minimal effort, the exact 
density of relaxation times at any 7. The main reason why this method 
works is that the decimation procedure is "incommensurate" with the spec- 
trum of {2}, so the map (5.20) is like a Poincar6 map, and every eigen- 
value 2 will appear with its correct weight when (5.20) is indefinitely 
iterated. For analytic (and numerical) studies it is often more convenient to 
calculate the integrated probability density, /~(x)=~x oo dyP(y). The fast 
convergence is illustrated by a few successive approximations of Eq. (5.21) 
shown in Fig. 27, for 7 =0.8.  Although we know that the band is [ - 7 ,  7], 
we deliberately started with a flat distribution P(c5) in the interval [ -  1, 1 ]. 
The points inside the band are trapped there; the points outside the band 
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Fig. 27. The integrated density of relaxation times: the numerical iteration of Eq. (5.21) for 
~/=0.8. The original probability density is a flat distribution defined on the interval 
[ -  1; + 1 ]; its integrated measure is linear. In a few iterations, shown by the consecutive lines, 
the exact result is reached. Note that the points lying outside the band [ - y ;  7] will escape to 
+ oo; this explains why/1 is less than 1. 
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are iterating to + o% as clearly shown in Fig. 27. Therefore, even if we had 
not known in advance the extension of the band, the numerical iteration of 
Eq. (5.21) shows it clearly. 

Let us next consider the possible extensions of this method for the 
more general case when 7 is some function of the space site index i, so that 
instead of (5.17) one has 

2• 7(i) (si)~= ( s /_ l )~  + (si+~)~. (5.22) 

Note that such a choice is possible because in the linear model under 
consideration w(sils~_l, s;, s;+~) depends in general on four independent 
parameters, two of them fixed by the linear model condition (3.4). 
Equation (5.22) is equivalent to a one-dimensional tight-binding Anderson 
model, to a Schr6dinger equation with inhomogeneous potentials, or to a 
harmonic chain with different masses. A decimation transformation will not 
preserve, in general, the form (5.22) if 7 ( i - 1 ) # 7 ( i +  1). The most general 
structure still invariant under such a decimation procedure is the 
hierarchical lattice shown in Fig. 28. Note that 7(i) may assume now n 
different values on a lattice consisting of 2 n lattice sites. Following the 
notation of Fig. 28, let us number this set of values by the order of 
iteration: 7o, 75 ' I I  I '  ~)m,'" �9 By eliminating all (si); .  variables corresponding 
to 7o values, one obtains a new set of equations similar to (5.19), but 
involving 7o and 7m" The dynamic renormalization is achieved by assigning 
to each such equation a "frequency" equal to 22'/7,, 1. Supposing that the 
original lattice was infinite, the whole set of equations (5.22) is recovered in 
this way. The resulting map is 

2 ' ( m )  = 22(ym l/•OYm)--Tm-1; m = 1, 2,... (5.23) 

][0 
1 

Fig. 28. 

i l l  i l l  Ill Ill 
"6~ "6 o "~2 "6o "~ "6o "63 '~o ~ "6o "62 "6o "~ ~o 

2 1 3 1 2 1 4 1 2 1 3 1 2 1 
The hierarchic structure: the dynamic variables are eliminated in the order 

indicated. 
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Note that (5.23) is a muhivalued map: if 2 was a proper eigenvalue of the 
infinite set of equations (5.22), then every 2'(m) must be also an eigenvalue, 
but with the weight 2-m! Except for the hierarchical structure, there is no 
further condition on the distribution of {•m}" For a given distribution 
(random or deterministic) R({Tm}) of the parameters 7m the stationary 
distribution of the map (5.23) is given by the iteration of the following 
integral equation: 

m m = l  ~)0~m 

Again, instead of the density of relaxation times P(2), it is sometimes more 
convenient to consider the integrated measure #(2): 

#()t) = d2' P(2') 

which provides a powerful tool for obtaining the full density of relaxation 
times. A rough attempt at such an iteration is shown in Fig. 29 for 7o = 0.7 
and using 7i= (~i-1 + A)/(1 + 7i-1 A) as a deterministic rule (A = 0.4). In 
contrast to Fig. 27, many points inside the physical interval [ - l ,  l ]  are 
escaping out because the branches of the four-valued map shown in 
Fig. 29a are not fully chaotic any longer: the spectrum also has a 
continuous-singular component. 

In spite of this complicated behavior, the dynamic phase transitions 
occurring in such a system can be understood using physical arguments 
analogous to the Lifschitz theory of fluctuating states or to the mechanism 
of Griffiths singularities in disordered systems. If some of the "barriers" Ym 
are very close to one, the corresponding relaxation times are very long: 
they provide the most important contributions to the density of states near 
the upper edge (2 c = l) of the "band" of relaxation times. If, in addition, 
the probability of occurrence (weight) of such barriers is known, one can 
write down the tail of the density of states as the weighted sum of such con- 
tributions. By changing some parameters, the form of the band tail may 
change, thus inducing a dynamic phase transition, where the long-time 
behavior changes from an exponential decay to an algebraic decay. ~ The 
interest reader is refered to the references in question for further details. 

Equation (5.22) can be rewritten also in a transfer-matrix form 

If )~ is an eigenvalue, then one has 

I I  Tt 
<SN>2 J i <  <Sl >)-J 
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The m a p  for the h ierarch ic  CA 
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Fig. 29. Three consecutive iteration steps of Eq. (5.24) for 70 = 0.7, A =0 .4 .  Note  that the 
four branches of the map (a) do not correspond to fully developed chaos. This means that 
many points from the [ - 7 0 ;  70] interval can now escape (b~t).  See also the "tail" structure 
near the point 2 = - 1 .  Further iterations are necessary to establish the full spectrum. 
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An alternative way of solving for the spectrum is to use the node-counting 
theorem to calculate the integrated density of states #(2) by counting the 
number of sign changes of (s i )a  during the iteration (5.25). This method is 
more flexible than the decimation procedure when dealing with different 
deterministic or random distributions of ?(i)'s. However, for the hierarchic 
structure shown in Fig. 28, Eq. (5.19) seems to be conceptually simpler and 
has a better convergence rate, due to the large number of sites eliminated 
in one iteration step. 

Example 15. (0+1) -Dimensional  Cellular Automaton 
Networks with Time-Dependent Rules. In this last example we 
consider the dynamics of one-site automaton, whose rules are set in dif- 
ferent time steps by the output of a parallel [also (0 + 1)-dimensional] 
automaton. This is the simplest possible example of a functionally 
hierarchic network of automata. Let us call the "driver" the automaton 
setting up the rules for the "slave." The slave automaton has a transition 
matrix 

I a(z) 1 - b(r)7 (5.27) 
P~= 1 - a ( r )  b(z) I 

corresponding to the (time-dependent) weight 

w~(lln')=l-a(r)+[b(r)-a(r)+l]n'; n ' - 0 ,  1 

where the parameters {a(z), b(r)} are given by the output of the driver 
automaton running one time step ahead. If the driver automaton is deter- 
ministic, one may call it a substitutional automaton; if the driver is a 
probabilistic one, one has a quenched automaton. The quantity of interest, 
which enters in the calculation of all stationary properties, is the limit 
distribution of the product matrix 

Poo = l i rn  ~I P~ (5.28) 
1: 

Examples of deterministic drivers are the Morse sequences and 
generalizations, (1~176 which have recently attracted a great deal of 
interest. (1~ In all these cases it is possible to define an "alphabet" con- 
sisting of two (or more) different matrices Pa and Pb (two possble dynamic 
rules). One builds up words going from right to left--because of the matrix 
product properties--according to some simple substitution rules. The 
Morse sequence can be constructed in many different ways: one way is to 
take a given word and to concatenate (to its left) the complementary word 
obtained by interchanging Pa and Pb- This is done until one obtains an 
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infinite word X, which is invariant under this operation. A different way is 
to define the substitution 

a(P,,)=PbPa; a(Pb)=PaPb; X =  lim a("~(Pa) (5.29) 
r t  ~ oT~ 

Similarly, one can define other substitutions, some corresponding to 
incommensurate (quasiperiodic) sequences, which were studied very 
actively recently in connection with quasicrystals. For  a one-dimensional 
Penrose tiling the substitution rules are 

r = PbP~, ; a(Pb) = PbPbPa (5.30) 

A different possibility for this particular substitution is to use the Fibonacci 
sequence generated by the automaton given in Example 2. (1~ 

These deterministic models can be treated by a properly defined renor- 
realization group transformation and usually display a very complicated 
phase diagram at T =  0, with infinitely many ground states. (1~ In terms of 
the substitution rules, the different ground states of these models are 
represented in terms of our stochastic matrices (the product of two 
stochastic matrices is also a stochastic matrix) as 

a(k)(P~)=ax or e; a(k)(Pb)=ax or e (5.31) 

where a (~) means the kth iteration of the substitution, while ax and e are 
the Pauli,matrix and the unit matrix, respectively. In linear (1 + 1)-dimen- 
sional CA one may use again the substitution rules for the set {7(i)} in 
Eq. (5.22). We note here that exactly this type of equation has been 
discussed for a "Fibonacci" driver in Ref. 102. 

The situation is quite similar for randomly driven automata, which can 
choose independently at every time step from, say, two set of rules with 
some given (quenched) probability. The driving automaton is in this case a 
quasirandom number generator. (H~ There is here a subtle point perhaps 
worth mentioning. Suppose one has a one-dimensional Ising model with 
quenched randomness; for example, the energy coupling J has the 
distribution R(J i )=P~(J -Jo )+  ( l - p )  6(J+Jo). In the statistical 
mechanical problem the partition function is given by the trace of a 
product such as (5.28) of (2 x 2) transfer matrices. Although each transfer 
matrix can be separately mapped into a stochastic matrix, this does not 
solve the problem for a random product of such matrices: two new types of 
diagonal matrices (corresponding to the two different left eigenvectors) 
appear whenever there is a change from a suite of Pa's to a suite of Pb's and 
vice versa. The random chain problem can be discussed also from a 
"dynamic" point of view. (37"38) A mapping between statistical physics and 
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Fig. 30. Constructing the limit distribution P(x) defined by the recursion (5.32). (37`38) (a) For 
the map shown here (al = 0 . 9 5 2 5 7 4 5 = l - a 2 ,  b~=0.4013122= l - b 2 )  a Cantor support is 
obtained. The probability of finding the matrix Pa (upper branch of the map) is p =0.6. 
(b) The fourth iterated P(x), starting from a flat distribution. (c)The support is the whole 
interval for the map shown here (same al, 2 as before, bl,2 are interchanged) but (d) the  
distribution is still singular after four iteration steps. Note that l n [ 5 P ( x ) +  1 ] is plotted. 
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stochastic matrices (CA) can be most easily done by requiring that the 
two-valued ~ induced by the right iteration 

1 
P~[exp(12x)],,~Iexp(_2x,)] (5.32) 

is the same as for the statistical physical model. In Figs. 30a and 30c we 
show the two maps one obtains, respectively, for the values 

al =0.952575= l - a 2 ,  bl =0.4013122= l - b 2  

and 

al = 0.952575 = 1 - a2, b2 = 0.4013122 = 1 - bl 

which are similar to maps one obtains for the random-energy Ising model 
in an external field. The probability of choosing the upper branch is p = 0.6. 
Starting from a flat distribution, one obtains after four iterations the dis- 
tributions shown in Figs. 28b and 28d. A change from a fractal support to 
a support over the whole confining interval is evident. The limit probability 
distribution is, however, highly nonanalytic in both cases. The one-dimen- 
sional random-energy Ising model in a field has an infinte number of phase 
transitions at T =  0 for the critical field values H c = 2Join, n > 0 is integer. 
Physically, this corresponds to the condition that the energy required to 
flip a cluster of n down-spins in the direction of the field vanishes. A similar 
phenomena will happen for the CA (5.29). Note that this kind of 
"spreading" of the probability distribution has been identified recently also 
for the Kauffman model (1~ of cell differentiation when a probabilistic 
element is added to the original rules (chose at random in space one of all 
possible deterministic rules involving a fixed number of neighbors and 
iterate in time according to the chosen rules). The behavior of such 
automata is very similar to those of spin glasses. (1~ 

6. CONCLUSIONS:  THE PROBABILISTIC C O M P U T E R  

This paper has two distinct parts: in the first part we explained the 
analogy between the transfer matrix formalism for short-range statistical 
mechanical models and the discrete time-developing operator of cellular 
automata. Viewed from this perspective, cellular automata are a special 
class of statistical mechanical models obeying the restriction (2.11). The 
bulk and surface properties of these statistical models correspond to 
long-time (stationary) and transient dynamic behavior, respectively, of 
probabilistic cellular automata. Deterministic, or almost deterministic, 
automata correspond to special configuration constraints or special ways 
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to take the T ~  0 limit in the statistical physical models. Many standard 
methods of statistical mechanics can thus be used in understanding and 
predicting the temporal behavior of cellular automata. Some exact results 
were derived in Section3, including a discussion of "disorder"-like 
solutions, fully integrable models, duality transformations, etc. Possible 
mechanisms of phase transitions have been reviewed following the known 
classification of stochastic matrices; the "universality" of such a mechanism 
has been tested in Section 4. 

In the Second part of this paper I have tried to show how statistical 
physics can be used to devise different dynamic rules whose behavior is 
totally or partially known in advance. Along the path I have presented 
some intriguing examples that are the subject of further research, while 
other examples seem to have direct practical applications. ! consider this 
work as a first step toward a much more ambitious program, namely the 
design of a fully parallel, probabilistic machine. In setting up this goal we 
have first to define what we expect from such a machine and what specific 
tasks cannot be achieved by other means. From the beginning it is clear 
that the main emphasis here is not on the speed of numerical calculations, 
not even on their precision. What we want is a new organizational principle, 
leading to a qualitatively different, intelligent machine. After all, we are also 
probabilistic "machines," and understanding the functional basis of such 
highly hierachical, parallel networks might help also understand the way 
we think. The main requirement on this new type of machine must be the 
ability to learn. This implies a decentralized structure which tries different 
avenues (1~ in solving a given problem, treating its own structure (architec- 
ture) on an equal footing with programs and data, and storing the optimal 
solution. I think here of different layers of cellular automata, running in 
parallel at different levels, some creating "wires" (see Figs. 19 and 21 ), some 
transporting information along the wires, and finally some executing 
operations when wires "meet." This requires also a completely new concept 
of memory--a  memory that is not labeled with addresses, but where infor- 
mation is locally stored and retrieved according to its level of processing 
and its content. The memory might have a layered structure in itself, giving 
in one end an abstract classification of data, while still being able to 
recover on the other end the full details of the particular objects with which 
it is presented. 

For the moment all this is only little more than speculation--and 
physics is not especially fond of speculation. My belief is that a gradual 
approach, solving parts of the problem at a time, is possible. On the other 
hand, it is not hard to predict that statistical physics will play an 
increasingly relevant role in neurobiology, computer science, and related 
fields. 
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